
Release 3.0 September 22, 2016 1

UNIVERSAL SERIAL BUS

DEVICE CLASS DEFINITION

FOR

AUDIO DEVICES

Release 3.0

September 22, 2016

Release 3.0 September 22, 2016 2

SCOPE OF THIS RELEASE

This document is the Release 3.0 of this Device Class Definition.

CONTRIBUTORS

Joe Scanlon Advanced Micro Devices

Rhoads Hollowell Apple Inc.

Girault Jones Apple Inc.

Matthew X. Mora Apple Inc.

Tzung-Dar Tsai C-Media Electronics, Inc.

Brad Lambert Cirrus Logic, Inc.

Dan Bogard Conexant Systems, Inc.

Pete Burgers DisplayLink (UK), Ltd.

David Roh Dolby Laboratories, Inc.

Leng Ooi Google, Inc.

Pierre-Louis Bossart Intel Corporation

David Hines Intel Corporation

Abdul Rahman Ismail (Co-Chair) Intel Corporation

Devon Worrell Intel Corporation

Chandrashekhar Rao Logitech, Inc.

Terry Moore MCCI Corporation

Alex Lin MediaTek, Inc.

Bala Sivakumar Microsoft Corporation

Geert Knapen (Co-Chair & Editor) NXP Semiconductors
 PL Mobile Audio

411 E. Plumeria drive

San Jose, CA 95134, USA

E-mail: geert.knapen@nxp.com

James Goel Qualcomm, Inc.

Andre Schevciw Qualcomm, Inc.

Jin-Sheng Wang Qualcomm, Inc.

Morten Christiansen Synopsys

REVISION HISTORY

Revision Date Filename Description

1.0 Mar. 18, 98 Audio10.pdf Release 1.0

2.0 May. 31, 06 Audio20 final.pdf Release 2.0

3.0 Sep. 22, 16 Audio30.pdf Release 3.0

mailto:geert.knapen@nxp.com

Release 3.0 September 22, 2016 3

Copyright © 1997-2016 USB Implementers Forum, Inc.

All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER

A LICENSE IS HEREBY GRANTED TO REPRODUCE THIS SPECIFICATION FOR INTERNAL USE ONLY. NO OTHER LICENSE,

EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, IS GRANTED OR INTENDED HEREBY.

USB-IF AND THE AUTHORS OF THIS SPECIFICATION EXPRESSLY DISCLAIM ALL LIABILITY FOR INFRINGEMENT OF

INTELLECTUAL PROPERTY RIGHTS RELATING TO IMPLEMENTATION OF INFORMATION IN THIS SPECIFICATION. USB-

IF AND THE AUTHORS OF THIS SPECIFICATION ALSO DO NOT WARRANT OR REPRESENT THAT SUCH

IMPLEMENTATION(S) WILL NOT INFRINGE THE INTELLECTUAL PROPERTY RIGHTS OF OTHERS.

THIS SPECIFICATION IS PROVIDED “AS IS” AND WITH NO WARRANTIES, EXPRESS OR IMPLIED, STATUTORY OR

OTHERWISE. ALL WARRANTIES ARE EXPRESSLY DISCLAIMED. USB-IF, ITS MEMBERS AND THE AUTHORS OF THIS

SPECIFICATION PROVIDE NO WARRANTY OF MERCHANTABILITY, NO WARRANTY OF NON-INFRINGEMENT, NO

WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE, AND NO WARRANTY ARISING OUT OF ANY PROPOSAL,

SPECIFICATION, OR SAMPLE.

IN NO EVENT WILL USB-IF, MEMBERS OR THE AUTHORS BE LIABLE TO ANOTHER FOR THE COST OF PROCURING

SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA OR ANY INCIDENTAL,

CONSEQUENTIAL, INDIRECT, OR SPECIAL DAMAGES, WHETHER UNDER CONTRACT, TORT, WARRANTY, OR

OTHERWISE, ARISING IN ANY WAY OUT OF THE USE OF THIS SPECIFICATION, WHETHER OR NOT SUCH PARTY HAD

ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

NOTE: VARIOUS USB-IF MEMBERS PARTICIPATED IN THE DRAFTING OF THIS SPECIFICATION. CERTAIN OF THESE

MEMBERS MAY HAVE DECLINED TO ENTER INTO A SPECIFIC AGREEMENT LICENSING INTELLECTUAL PROPERTY

RIGHTS THAT MAY BE INFRINGED IN THE IMPLEMENTATION OF THIS SPECIFICATION. PERSONS IMPLEMENT THIS

SPECIFICATION AT THEIR OWN RISK.

Dolby™, AC-3™, Pro Logic™ and Dolby Surround™ are trademarks of Dolby Laboratories, Inc.

All other product names are trademarks, registered trademarks, or service marks of their respective owners.

Please send comments via electronic mail to audio-chair@usb.org

Release 3.0 September 22, 2016 4

TABLE OF CONTENTS

Scope of This Release .. 2

Contributors... 2

Revision History ... 2

Table of Contents .. 4

List of Tables .. 8

List of Figures ... 12

1 Introduction ... 13

1.1 Scope ... 13

1.2 Purpose .. 13

1.3 Related Documents ... 13

1.4 Terms and Abbreviations ... 13

2 Management Overview ... 16

2.1 Overview of Key Differences between ADC v2.0 and v3.0 .. 16

3 Functional Characteristics ... 18

3.1 Introduction ... 18

3.2 Basic Audio Device Definition .. 20

3.3 Backwards Compatibility ... 20

3.4 Audio Interface Association (AIA) and Interface Association Descriptor ... 21

3.4.1 Audio Function Class .. 21

3.4.2 Audio Function Subclass .. 21

3.4.3 Audio Function Protocol .. 21

3.5 Audio Interface Class ... 21

3.6 Audio Interface Subclass .. 22

3.7 Audio Interface Protocol .. 22

3.8 Audio Function Category ... 22

3.9 Clock Domains ... 23

3.10 Power Domains .. 23

3.11 Audio Synchronization Types ... 23

3.11.1 Asynchronous .. 23

3.11.2 Synchronous .. 24

3.11.3 Adaptive ... 24

3.11.4 Implications of the Different Synchronization Types ... 24

3.12 Inter Channel Synchronization... 26

3.13 Audio Function Topology ... 26

3.13.1 Cluster .. 30

3.13.2 Input Terminal ... 30

Release 3.0 September 22, 2016 5

3.13.3 Output Terminal .. 31

3.13.4 Mixer Unit .. 32

3.13.5 Selector Unit .. 33

3.13.6 Feature Unit ... 33

3.13.7 Sampling Rate Converter Unit ... 34

3.13.8 Effect Unit .. 35

3.13.9 Processing Unit .. 38

3.13.10 Extension Unit .. 41

3.13.11 Clock Entities .. 41

3.14 Operational Model... 43

3.14.1 AudioControl Interface .. 44

3.14.2 AudioStreaming Interface .. 44

3.14.3 Clock Model ... 46

3.14.4 Power Domains Model .. 46

3.14.5 Additional Power Considerations and Requirements .. 47

3.14.6 Binding between Physical Buttons and Audio Controls ... 48

4 Descriptors ... 49

4.1 Standard Descriptors ... 49

4.2 Class-Specific Descriptors .. 49

4.2.1 Traditional Class-Specific Descriptors .. 50

4.2.2 High Capability Class-Specific Descriptors ... 50

4.3 Cluster Descriptor .. 51

4.3.1 Cluster Descriptor Header ... 52

4.3.2 Cluster Descriptor Block... 53

4.3.3 Example Cluster descriptor .. 60

4.3.4 CEA-861.2 Channel Mapping ... 62

4.4 Physical versus Logical Cluster ... 62

4.4.1 Mapping between Physical and Logical Clusters ... 62

4.5 AudioControl Interface Descriptors ... 64

4.5.1 Standard AC Interface Descriptor .. 65

4.5.2 Class-Specific AC Interface Descriptor ... 65

4.6 AudioControl Endpoint Descriptors ... 95

4.6.1 AC Control Endpoint Descriptors ... 95

4.6.2 AC Interrupt Endpoint Descriptors .. 95

4.7 AudioStreaming Interface Descriptors .. 96

4.7.1 Standard AS Interface Descriptor .. 96

4.7.2 Class-Specific AS Interface Descriptor ... 97

4.7.3 Class-Specific AS Valid Frequency Range Descriptor ... 98

Release 3.0 September 22, 2016 6

4.8 AudioStreaming Endpoint Descriptors .. 98

4.8.1 AS Isochronous Audio Data Endpoint Descriptors ... 98

4.8.2 AS Isochronous Feedback Endpoint Descriptor ... 100

4.9 Class-specific String descriptors ... 101

5 Requests .. 103

5.1 Standard Requests ... 103

5.2 Class-Specific Requests .. 103

5.2.1 AudioControl Requests .. 104

5.2.2 AudioStreaming Requests .. 129

5.2.3 Additional Requests ... 131

6 Interrupts ... 135

6.1 Interrupt Data Message ... 135

6.2 Interrupt Sources ... 137

Appendix A. Audio Device Class Codes .. 138

A.1 Audio Function Class Code... 138

A.2 Audio Function Subclass Codes ... 138

A.3 Audio Function Protocol Codes ... 138

A.4 Audio Interface Class Code .. 138

A.5 Audio Interface Subclass Codes ... 139

A.6 Audio Interface Protocol Codes ... 139

A.7 Audio Function Category Codes ... 139

A.8 Audio Class-Specific Descriptor Types ... 140

A.9 Cluster Descriptor Subtypes .. 140

A.10 Cluster Descriptor Segment types ... 140

A.11 Channel Purpose Definitions ... 140

A.12 Channel Relationship Definitions ... 141

A.13 Ambisonic Component Ordering Convention Types ... 143

A.14 Ambisonic Normalization Types .. 143

A.15 Audio Class-Specific AC Interface Descriptor Subtypes ... 144

A.16 Audio Class-Specific AS Interface Descriptor Subtypes ... 144

A.17 Audio Class-Specific String descriptor Subtypes .. 144

A.18 Extended Terminal Segment Types ... 145

A.19 Effect Unit Effect Types.. 145

A.20 Processing Unit Process Types ... 145

A.21 Audio Class-Specific Endpoint Descriptor Subtypes .. 145

A.22 Audio Class-Specific Request Codes .. 146

A.23 Control Selector Codes .. 146

A.23.1 AudioControl Interface Control Selectors .. 146

Release 3.0 September 22, 2016 7

A.23.2 Clock Source Control Selectors .. 146

A.23.3 Clock Selector Control Selectors .. 146

A.23.4 Clock Multiplier Control Selectors ... 146

A.23.5 Terminal Control Selectors .. 147

A.23.6 Mixer Control Selectors ... 147

A.23.7 Selector Control Selectors ... 147

A.23.8 Feature Unit Control Selectors .. 147

A.23.9 Effect Unit Control Selectors.. 148

A.23.10 Processing Unit Control Selectors .. 150

A.23.11 Extension Unit Control Selectors ... 150

A.23.12 AudioStreaming Interface Control Selectors ... 150

A.23.13 Endpoint Control Selectors .. 151

A.24 Connector Types .. 151

Release 3.0 September 22, 2016 8

LIST OF TABLES

Table 4-1: Traditional Class-Specific Descriptor Layout ... 50

Table 4-2: High Capability Class-Specific Descriptor Layout .. 51

Table 4-3: Cluster Descriptor Header .. 52

Table 4-4: Cluster Descriptor Segment .. 53

Table 4-5: End Segment ... 54

Table 4-6: Cluster Description Segment .. 54

Table 4-7: Vendor-defined Segment.. 54

Table 4-8: Channel Relationships .. 55

Table 4-9: Information Segment .. 59

Table 4-10: Ambisonic Segment .. 59

Table 4-11: Channel Description Segment .. 60

Table 4-12: Vendor-defined Segment.. 60

Table 4-13: Cluster Descriptor Example .. 60

Table 4-14: Standard AC Interface Descriptor ... 65

Table 4-15: Class-Specific AC Interface Header Descriptor ... 66

Table 4-16: Input Terminal Descriptor ... 67

Table 4-17: Output Terminal Descriptor .. 69

Table 4-18: Extended Terminal Descriptor Header ... 70

Table 4-19: Cluster Descriptor Segment .. 71

Table 4-20: End Segment ... 72

Table 4-21: Vendor-defined Segment.. 72

Table 4-22: Bandwidth Segment ... 73

Table 4-23: Magnitude Segment ... 73

Table 4-24: Magnitude/Phase Segment .. 73

Table 4-25: Position Segment .. 74

Table 4-26: Position Segment .. 74

Table 4-27: Vendor-defined Segment.. 75

Table 4-28: Connectors Descriptor .. 76

Table 4-29: Mixer Unit Descriptor ... 79

Table 4-30: Selector Unit Descriptor ... 80

Table 4-31: Feature Unit Descriptor .. 80

Table 4-32: Sampling Rate Converter Unit Descriptor .. 82

Table 4-33: Effect Unit Descriptor ... 82

Table 4-34: Parametric Equalizer Section Effect Unit Descriptor .. 83

Table 4-35: Reverberation Effect Unit Descriptor ... 84

Table 4-36: Modulation Delay Effect Unit Descriptor ... 85

Release 3.0 September 22, 2016 9

Table 4-37: Dynamic Range Compressor Effect Unit Descriptor ... 85

Table 4-38: Common Part of the Processing Unit Descriptor .. 87

Table 4-39: Up/Down-mix Processing Unit Descriptor .. 88

Table 4-40: Stereo Extender Processing Unit Descriptor ... 89

Table 4-41: Multi-Function Processing Unit Descriptor ... 90

Table 4-42: Extension Unit Descriptor ... 91

Table 4-43: Clock Source Descriptor .. 92

Table 4-44: Clock Selector Descriptor .. 93

Table 4-45: Clock Multiplier Descriptor ... 93

Table 4-46: Power Domain Descriptor .. 94

Table 4-47: Standard AC Interrupt Endpoint Descriptor ... 95

Table 4-48: Standard AS Interface Descriptor ... 96

Table 4-49: Class-Specific AS Interface Descriptor .. 97

Table 4-50: Class-Specific AS Valid Frequency Range Descriptor .. 98

Table 4-51: Standard AS Isochronous Audio Data Endpoint Descriptor .. 99

Table 4-52: Class-Specific AS Isochronous Audio Data Endpoint Descriptor ... 100

Table 4-53: Standard AS Isochronous Feedback Endpoint Descriptor .. 101

Table 4-54: Class-specific String Descriptor ... 102

Table 5-1: Request Layout ... 105

Table 5-2: 1-byte Control CUR Parameter Block ... 107

Table 5-3: 1-byte Control RANGE Parameter Block ... 107

Table 5-4: 2-byte Control CUR Parameter Block ... 107

Table 5-5: 2-byte Control RANGE Parameter Block ... 107

Table 5-6: 4-byte Control CUR Parameter Block ... 108

Table 5-7: 4-byte Control RANGE Parameter Block ... 108

Table 5-8: INTEN Parameter Block ... 109

Table 5-9: Insertion Control CUR Parameter Block.. 111

Table 5-10: Band Numbers and Center Frequencies (ANSI S1.11-1986 Standard) ... 115

Table 5-11: Graphic Equalizer Control CUR Parameter Block .. 116

Table 5-12: Graphic Equalizer Control RANGE Parameter Block ... 116

Table 5-13: Valid Alternate Settings Control CUR Parameter Block .. 130

Table 5-14: Audio Data Format Control CUR Parameter Block ... 130

Table 5-15: Memory Request Values ... 132

Table 5-16: String Request ... 133

Table 5-17: High Capability Descriptor Request .. 134

Table 6-1: Interrupt Data Message Format ... 136

Table A-1: Audio Function Class Code ... 138

Table A-2: Audio Function Subclass Codes .. 138

Release 3.0 September 22, 2016 10

Table A-3: Audio Function Protocol Codes .. 138

Table A-4: Audio Interface Class Code ... 138

Table A-5: Audio Interface Subclass Codes .. 139

Table A-6: Audio Interface Protocol Codes .. 139

Table A-7: Audio Function Category Codes ... 139

Table A-8: Audio Class-specific Descriptor Types .. 140

Table A-9: Audio Class-Specific Cluster Descriptor Subtypes .. 140

Table A-10: Cluster Descriptor Segment Types ... 140

Table A-11: Channel Purpose Definitions .. 140

Table A-12: Channel Relationship Definitions ... 141

Table A-13: Ambisonic Component Ordering Convention Types .. 143

Table A-14: Ambisonic Normalization Types ... 143

Table A-15: Audio Class-Specific AC Interface Descriptor Subtypes .. 144

Table A-16: Audio Class-Specific AS Interface Descriptor Subtypes .. 144

Table A-17: Audio Class-Specific String descriptor Subtypes ... 144

Table A-18: Extended Terminal Segment Types .. 145

Table A-19: Effect Unit Effect Types .. 145

Table A-20: Processing Unit Process Types ... 145

Table A-21: Audio Class-Specific Endpoint Descriptor Subtypes ... 145

Table A-22: Audio Class-Specific Request Codes ... 146

Table A-23: AudioControl Interface Control Selectors .. 146

Table A-24: Clock Source Control Selectors ... 146

Table A-25: Clock Selector Control Selectors ... 146

Table A-26: Clock Multiplier Control Selectors .. 146

Table A-27: Terminal Control Selectors ... 147

Table A-28: Mixer Control Selectors .. 147

Table A-29: Selector Control Selectors .. 147

Table A-30: Feature Unit Control Selectors ... 147

Table A-31: Reverberation Effect Unit Control Selectors .. 148

Table A-32: Reverberation Effect Unit Control Selectors .. 148

Table A-33: Modulation Delay Effect Unit Control Selectors .. 149

Table A-34: Dynamic Range Compressor Effect Unit Control Selectors .. 149

Table A-35: Up/Down-mix Processing Unit Control Selectors ... 150

Table A-36: Stereo Extender Processing Unit Control Selectors ... 150

Table A-37: Extension Unit Control Selectors .. 150

Table A-38: AudioStreaming Interface Control Selectors .. 150

Table A-39: Endpoint Control Selectors ... 151

Table A-40: Connector Types ... 151

Release 3.0 September 22, 2016 11

Release 3.0 September 22, 2016 12

LIST OF FIGURES

Figure 3-1: Multiple Configurations and their Audio Interface Associations and Interfaces 18

Figure 3-2: Audio Function Global View .. 19

Figure 3-3: Inside the Audio Function.. 29

Figure 3-4: Input Terminal Icon ... 31

Figure 3-5: Output Terminal Icon .. 32

Figure 3-6: Mixer Unit Icon .. 33

Figure 3-7: Selector Unit Icon .. 33

Figure 3-8: Feature Unit Icon ... 34

Figure 3-9: Sampling Rate Converter Unit Icon ... 35

Figure 3-10: PEQS Effect Unit Icon ... 36

Figure 3-11: Reverberation Effect Unit Icon .. 36

Figure 3-12: Modulation Delay Effect Unit Icon .. 37

Figure 3-13: Dynamic Range Compressor Transfer Characteristic .. 37

Figure 3-14: Dynamic Range Compressor Effect Unit Icon .. 38

Figure 3-15: Up/Down-mix Processing Unit Icon ... 39

Figure 3-16: Stereo Extender Processing Unit Icon ... 40

Figure 3-17 Multi-Function Processing Unit Icon .. 41

Figure 3-18: Extension Unit Icon .. 41

Figure 3-19: Clock Source Icon... 42

Figure 3-20: Clock Selector Icon .. 43

Figure 3-21: Clock Multiplier Icon .. 43

Figure 4-1: Cluster Descriptor .. 52

Figure 4-2: Cluster Descriptor Block .. 53

Figure 4-3: 3D Representation of the Channel Relationships .. 58

Figure 4-4: Physical to Logical Cluster Mapping .. 63

Figure 4-5: Logical to Physical Cluster Mapping .. 64

Figure 4-6: Extended Terminal Descriptor ... 70

Figure 4-7: Extended Terminal Channel Block ... 71

Figure 4-8: Mixer internals .. 78

Release 3.0 September 22, 2016 13

1 INTRODUCTION

1.1 SCOPE

The Audio Device Class Definition applies to all devices or functions embedded in composite devices that are used

to manipulate audio, voice, and sound-related functionality. This includes both audio data (analog and digital) and

the functionality that is used to directly control the audio environment, such as Volume and Tone Control. The

Audio Device Class does not include functionality to operate transport mechanisms that are related to the

reproduction of audio data, such as tape transport mechanisms or CD-ROM drive control.

1.2 PURPOSE

The purpose of this document is to describe the minimum capabilities and characteristics an audio device shall

support to comply with the USB. This document also provides recommendations for optional features.

1.3 RELATED DOCUMENTS

 Universal Serial Bus Specification, Revision 2.0 (referred to in this document as the USB Specification). In

particular, see Chapter 5, “USB Data Flow Model” and Chapter 9, “USB Device Framework.”

 Universal Serial Bus 3.1 Specification, Revision 1.0 (referred to in this document as the USB 3.1 Specification).

This document covers details specific to SuperSpeed and SuperSpeed+ devices.

 Universal Serial Bus Device Class Definition for Audio Data Formats (referred to in this document as USB Audio

Data Formats).

 Universal Serial Bus Device Class Definition for Terminal Types (referred to in this document as USB Audio

Terminal Types).

 ANSI S1.11-1986 standard.

 MPEG-1 standard ISO/IEC 111172-3 1993.

 MPEG-2 standard ISO/IEC 13818-3 Feb. 20, 1997.

 Digital Audio Compression Standard (AC-3), ATSC A/52A Aug. 20, 2001. (available from http://www.atsc.org/)

 ANSI/IEEE-754 floating-point standard.

 ISO/IEC 60958 International Standard: Digital Audio Interface and Annexes.

 ISO/IEC 61937 standard.

1.4 TERMS AND ABBREVIATIONS

This section defines terms used throughout this document. For additional terms that pertain to the Universal Serial

Bus, see Chapter 2, “Terms and Abbreviations,” in the USB Specification.

ASRC Acronym for Asynchronous Sampling Rate Conversion.

(Audio Channel) Cluster Group of logical audio channels that carry tightly related

synchronous audio information. A stereo audio stream is a typical

example of a two-channel Cluster.

Audio Control Attribute Parameter of an Audio Control. Examples are Current, Minimum,

Maximum and Resolution attributes of a Volume Control.

Audio Control Logical object that is used to manipulate a specific audio property.

Examples are Volume Control, Mute Control, etc.

http://www.atsc.org/

Release 3.0 September 22, 2016 14

Audio data stream Transport medium that can carry audio information.

AEC Acronym for Audio Echo Cancellation.

Audio Function Independent part of a USB device that deals with audio-related

functionality.

Audio Interface Association (AIA) Grouping of a single AudioControl interface, zero or more

AudioStreaming interfaces and zero or more MIDIStreaming

interfaces that together constitute a complete interface to a

particular version (compliance level) of the Audio Function.

AudioControl interface (ACI) USB interface used to access the Audio Controls inside an Audio

Function.

AudioStreaming interface (ASI) USB interface used to transport audio streams into or out of the

Audio Function.

Clock Multiplier (CM) Multiplies a clock signal by a fractional multiplier.

Clock Selector (CX) Selects from a number of input clock signals.

Clock Source (CS) Generates an audio-related clock signal (master clock or sample

clock).

CMD Acronym for Clock Multiplier descriptor.

CSD Acronym for Clock Source descriptor.

CXD Acronym for Clock Selector descriptor.

Effect Unit (EU) Provides advanced audio manipulation on the incoming logical

audio channels.

Entity Addressable logical object inside an Audio Function.

Extension Unit (XU) Applies an undefined process to a number of logical input

channels.

Feature Unit (FU) Provides basic audio manipulation on the incoming logical audio

channels.

FUD Acronym for Feature Unit descriptor.

High Capability Descriptor A new representation for class-specific descriptors that allows for

potentially large (>256 bytes) and dynamic descriptors.

Input Pin Logical input connection to an Entity. Carries a single Cluster.

Input Terminal (IT) Receptacle for audio information flowing into the Audio Function.

ITD Acronym for Input Terminal descriptor.

Logical Audio Channel Logical transport medium for a single audio channel. Makes

abstraction of the physical properties and formats of the

connection. Is usually identified by spatial location. Examples are

Left channel, Right Surround channel, etc.

Release 3.0 September 22, 2016 15

MIDIStreaming interface (MSI) USB interface that may be used to transport MIDI data streams

into or out of the Audio Function.

Mixer Unit (MU) Mixes a number of logical input channels into a number of logical

output channels.

MUD Acronym for Mixer Unit descriptor.

OTD Acronym for Output Terminal descriptor.

Output Pin Logical output connection to an Entity. Carries a single Cluster.

Output Terminal (OT) An outlet for audio information flowing out of the Audio Function.

Phase Locked Loop A hardware or software control system that generates an output

signal whose phase is related to the phase of an input signal.

Typically used in clock recovery applications.

Processing Unit (PU) Applies a predefined process to a number of logical input channels.

PUD Acronym for Processing Unit descriptor.

Reserved Reserved is a keyword indicating reserved bits, bytes, words, fields,

and code values that are set-aside for future standardization. Their

use and interpretation may be specified by future extensions to

this specification and, unless otherwise stated, shall not be utilized

or adapted by vendor implementation. A reserved bit, byte, word,

or field shall be set to zero by the sender and shall be ignored by

the receiver.

RUD Acronym for Sampling Rate Converter Unit descriptor.

Sampling Rate Converter Unit (RU) Converts the incoming audio data stream, running at a sampling

rate, synchronous to a first master clock, into an outgoing audio

data stream that is running at a sampling rate, synchronous to a

second master clock, which is free running with respect to the first

master clock.

Selector Unit (SU) Selects from a number of input Clusters.

SUD Acronym for Selector Unit descriptor.

Terminal Addressable logical object inside an Audio Function that represents

a connection to the Audio Function’s outside world.

Unit Addressable logical object inside an Audio Function that represents

a certain audio sub-functionality.

XUD Acronym for Extension Unit descriptor.

Release 3.0 September 22, 2016 16

2 MANAGEMENT OVERVIEW

The USB is very well suited for transport of audio, ranging from low fidelity voice connections to high quality, multi-

channel audio streams. The USB has become a ubiquitous connector on modern PC’s and is well-understood by

most consumers today. As such, it has become the connector of choice for many peripherals and is indeed the

simplest and most pervasive digital audio connector available today. Consumers can count on this medium to meet

all of their current and future audio needs. Many applications from communications, to entertainment, to music

recording and playback, can take advantage of the audio features of the USB.

In principle, a versatile bus specification like the USB provides many ways to propagate and/or control digital

audio. For the industry, however, it is very important that audio transport mechanisms be well defined and

standardized on the USB. Only in this way can interoperability be guaranteed among the many possible audio

devices on the USB. Standardized audio transport mechanisms also help to keep software drivers as generic as

possible. The Audio Device Class described in this document satisfies those requirements. It is written and revised

by experts in the audio field. Other device classes that address audio in some way should refer to this document

for their audio interface specification.

An essential issue in audio is synchronization of the data streams. Indeed, the smallest artifacts are easily detected

by the human ear. Therefore, a robust synchronization scheme on isochronous transfers has been developed and

incorporated in the USB Specification and the USB 3.1 Specification. The Audio Device Class definition adheres to

these synchronization schemes to transport audio data reliably over the bus.

This document contains all necessary information for a designer to build a USB-compliant device that incorporates

Audio Functionality. It specifies the standard and class-specific descriptors that shall be present in each USB Audio

Function. It further explains the use of class-specific requests that allow for full Audio Function control. A number

of predefined data formats are listed and fully documented. Each format defines a standard way of transporting

audio over the USB. Provisions have been made so that vendor-specific audio formats and compression schemes

can be handled as well.

Many of the changes introduced in this version of the USB Specification for Audio Devices are inspired by the

desire to use USB Audio in modern portable devices. Special attention has been paid to make the Audio Device

Class more power-friendly by providing new tools to selectively enable and disable parts of the Audio Function and

also by supporting burst mode data transfers for longer sleep times in between data transfers. In addition, the

specification supports new codec types and data formats for consumer audio applications, provides numerous

clarifications of the original specification and extensions to support various changes in the core specification.

2.1 OVERVIEW OF KEY DIFFERENCES BETWEEN ADC V2.0 AND V3.0

The following list is not an exhaustive list of all changes that have been introduced. For complete information,

refer to the full specification.

• Dolby Processing Unit removed

• Encoder and Decoder support removed

• Copy protection (S/PDIF-style) removed

• bmAttributes (MaxPacketsOnly bit) field in class-specific isochronous endpoint descriptor removed

• Type II and Extended Type II Audio Data Formats removed

• New Power Domains

• New Multi-Function Processing Unit

• Additional Type III formats introduced

Release 3.0 September 22, 2016 17

• New Cluster descriptor

• New Extended Terminal descriptor

• New Connectors descriptor

• Layout of all class-specific descriptors has changed

• New class-specific String descriptors

• New High Capability descriptors

• Additional sources for interrupts

• Provides for backward compatibility, using multiple Configuration descriptors

• Support for LPM/L1

• Mandated support for BADD on each ADC3.0 compliant device

Release 3.0 September 22, 2016 18

3 FUNCTIONAL CHARACTERISTICS

3.1 INTRODUCTION

In many cases, Audio Functionality does not exist as a standalone device. It is one capability that, together with

other functions, constitutes a “composite” device. A perfect example of this is a DVD-ROM player, which can

incorporate video, audio, data storage, and transport control. The Audio Function is thus located at the interface

level in the device class hierarchy. The following figure provides details.

Figure 3-1: Multiple Configurations and their Audio Interface Associations and Interfaces

An Audio Function is considered to be a ‘closed box’ that has very distinct and well defined interfaces to the

outside world. Audio Functions are addressed and accessed through an Audio Interface Association (AIA). The AIA

groups all USB interfaces that together provide access to the Audio Function for control and streaming purposes.

A USB Device may express different AIAs representing the same underlying hardware by using multiple USB Device

Configuration descriptors. These AIAs may be used to provide access to the Audio Function at different compliance

levels. For example, one AIA might provide access to the Audio Function in ADC 1.0 mode, whereas another AIA

might provide access to the Audio Function in ADC 3.0 mode, as defined by this document. Note that the Audio

Function may take on a different topology and even different functionality when accessed through different AIAs.

Because only one Configuration may be active at a time, only one AIA shall be active at a time for the same Audio

Function. Host software should choose the most desirable Configuration and use the Standard

SET_CONFIGURATION command to select the Configuration containing the most desired AIA or AIAs (if there are

multiple independent Audio Functions residing in the same USB Device).

An AIA shall have a single AudioControl interface and can have zero or more AudioStreaming and zero or more

MIDIStreaming interfaces. The AudioControl (AC) interface is used to access the Audio Controls of the function

whereas the AudioStreaming (AS) interfaces are used to transport audio streams into and out of the Audio

Release 3.0 September 22, 2016 19

Function. MIDIStreaming (MS) interfaces can be used to transport MIDI data streams into and out of the Audio

Function.

Note: All MIDI-related information is grouped in a separate document, Universal Serial Bus Device Class

Definition for MIDI Devices that is considered part of this specification. The remainder of this document

will therefore not mention MIDIStreaming interfaces and their specifics anymore.

Note that AudioStreaming interfaces do not necessarily all represent USB audio streams. Any audio stream,

regardless of its origin or destination that enters or leaves the Audio Function may have an associated

AudioStreaming interface, if that interface requires the Host to have access and/or visibility to some interface

Controls or descriptors that may have an impact on the operation of the interface from a USB perspective.

A device can have multiple independent Audio Functions located in the same composite Device. They are each

accessed through their active Audio Interface Association, which must be contained within the currently selected

USB Configuration.

The following figure illustrates the concept of an Audio Function and its associated interfaces:

Figure 3-2: Audio Function Global View

All functionality pertaining to controlling parameters that directly influence audio perception (like volume) are

located inside the central rectangle and are exclusively controlled through the AudioControl interface. Streaming

aspects of the communication to or from the Audio Function are handled through separate AudioStreaming

interfaces, as necessary. Each USB audio stream shall be represented by an AudioStreaming interface. A non-USB

audio stream may be represented by an AudioStreaming interface if there is a need to convey information

Release 3.0 September 22, 2016 20

between that audio stream’s interface and the Host. All control data that is related specifically to the streaming

behavior of the interface is conveyed through the AudioStreaming interface.

A physical S/PDIF connection to the Audio Function is a typical example of a non-USB AudioStreaming interface.

Although the actual audio data is coming in from the outside world (not through the USB), it might be necessary to

control some aspects of the S/PDIF connection. In that case, the S/PDIF connection is represented by an

AudioStreaming interface so that it becomes addressable through USB.

Also note that the connection between the AudioStreaming interfaces and the Audio Function is not ‘solid’. The

reason for this is that when seen from the inside of the Audio Function, each audio stream entering or leaving the

Audio Function is represented by a special object, called a Terminal (see further). The Terminal concept abstracts

the actual AudioStreaming interface inside the Audio Function and provides a logical view on the connection rather

than a physical view. This abstraction allows audio channels within the Audio Function to be treated as ‘logical’

audio channels that do not have physical characteristics associated with them anymore (analog vs. digital, format,

sampling rate, bit resolution, etc.).

3.2 BASIC AUDIO DEVICE DEFINITION

The Basic Audio Device Definition (BADD) exists as a separate document and is based on and fully compatible with

this Audio Device Class Definition (ADC 3.0). As such, the BADD defines a subset of functionality commonly found

in Headphones, Microphones, and Headsets using the features and tools provided by the ADC but it removes all of

the optionality allowed by the ADC and prescribes rigorously how certain features shall be implemented. This

allows simple Host drivers to know exactly what to expect when encountering a BADD-compliant device, reducing

significantly the work a driver needs to perform parsing the BADD Device’s descriptors and interacting with the

Device.

3.3 BACKWARDS COMPATIBILITY

This 3.0 version of the Audio Device Class Definition (ADC 3.0) as such is not backwards compatible with any of the

previous versions of the same specification.

However, to ensure the broadest possible interoperability among new ADC 3.0 Devices and legacy ADC 1.0 or ADC

2.0 Hosts, this specification requires that the ADC 3.0 compliant Device shall do the following:

 The first USB Configuration descriptor (index 0) exposed by the Device shall contain an Audio Interface

Association (AIA), which is compliant with ADC 1.0 or ADC 2.0. In other words, if Host software selects the first

indexed Device Configuration, it shall expose an Audio Function that is compliant with ADC 1.0 or ADC 2.0. This

requirement should allow the Audio Function to interoperate with existing Hosts exactly the same as current

legacy ADC 1.0 or ADC 2.0 Functions.

 If the Audio Function contains at least one USB Audio Streaming Interface, the Device shall have another

Configuration descriptor that exposes an AIA which is BADD 3.0 compliant. A Device shall only have a single

AIA of this type. However, this same BADD compliant AIA may need to be duplicated in more than one

Configuration descriptor. This requirement guarantees that the Device will interoperate with new ADC 3.0

Hosts that support the BADD 3.0 specification. To activate this mode of operation for the Audio Function, the

Host needs to select a Device Configuration which contains the BADD 3.0 compliant AIA.

 The Device may have one or more Configurations that expose one or more AIAs which shall be compliant with

ADC 3.0. This way the Audio Function may provide functionality beyond what is available in BADD 3.0

operating mode. To activate this mode of operation, the Host needs to explicitly select a Configuration that

contains the desired AIA(s).

Release 3.0 September 22, 2016 21

It is strongly recommended that ALL ADC 3.0 Hosts support the BADD 3.0 specification.

3.4 AUDIO INTERFACE ASSOCIATION (AIA) AND INTERFACE ASSOCIATION

DESCRIPTOR

On the USB, an Audio Function is completely defined by its interfaces. An Audio Function has one or more Audio

Interface Associations (AIA) that provide access to it at different compliance levels. Only one AIA can be active at

one time. Each AIA shall have one AudioControl interface and can have zero or more AudioStreaming interfaces.

The standard USB Interface Association mechanism is used to describe the Audio Interface Association i.e. to bind

those interfaces together. Interface Association is expressed via the standard USB Interface Association descriptor

(IAD). Every Interface Association descriptor has a bFunctionClass, bFunctionSubClass and bFunctionProtocol field

that together identify the function that is represented by the Association. The following paragraphs define these

fields for the Audio Device Class.

3.4.1 AUDIO FUNCTION CLASS

The Audio Function Class is contained in the bFunctionClass field of a Standard Interface Association descriptor.

This specification requires that the Function Class code be the same as the Audio Interface Class code.

The Audio Function Class code is assigned by the USB-IF. For details, see Appendix A.1, “Audio Function Class

Code”.

3.4.2 AUDIO FUNCTION SUBCLASS

The Audio Function Subclass is contained in the bFunctionSubClass field of a Standard Interface Association

descriptor. Any AIA exposed by a Device that is compliant with this specification shall use this field to further

define the device. This field indicates whether the AIA is a full-fledged implementation of the ADC 3.0 specification

or is compliant with one of the BADD-defined Profiles.

The assigned codes can be found in A.2, “Audio Function Subclass Codes” of this specification. All other Subclass

codes are unused and reserved by this specification for future use.

3.4.3 AUDIO FUNCTION PROTOCOL

The Audio Function Protocol is contained in the bFunctionProtocol field of a Standard Interface Association

descriptor. The Function Protocol code is used to reflect the compliance level of the Audio Function so that

enumeration software can decide which driver version needs to be instantiated. This specification requires that

the Function Protocol code be the same as the Audio Interface (both AudioControl and AudioStreaming) Protocol

code.

The assigned Protocol codes can be found in Appendix A.3, “Audio Function Protocol Codes” of this specification.

All other Protocol codes are unused and reserved by this specification for future use.

3.5 AUDIO INTERFACE CLASS

The Audio Interface Class code is contained in the bInterfaceClass field of the Standard Interface descriptor of any

Interface contained in an AIA. All USB Interfaces which provide functionality through this specification use the

same Audio Interface Class code.

The Audio Interface class code is assigned by the USB. For details, see Appendix A.4, “Audio Interface Class Code”.

Release 3.0 September 22, 2016 22

3.6 AUDIO INTERFACE SUBCLASS

The Audio Interface Subclass code is contained in the bInterfaceSubClass field of the Standard Interface descriptor

of any Interface contained in an AIA. All USB interfaces that provide functionality through this specification, as well

as any interfaces that provide MIDI streaming functionality, shall use one of the following Audio Interface Subclass

codes as provided by this specification:

 AudioControl Interface Subclass

 AudioStreaming Interface Subclass

 MIDIStreaming Interface Subclass

The assigned codes can be found in Appendix A.5, “Audio Interface Subclass Codes” of this specification. All other

Subclass codes are unused and reserved by this specification for future use.

3.7 AUDIO INTERFACE PROTOCOL

The Audio Interface Protocol code is contained in the bInterfaceProtocol field of the Standard Interface descriptor

of any Interface contained in an AIA. The Interface Protocol code is used to reflect the compliance level of the

Audio Function.

All Audio Functions compliant with this ADC 3.0 specification shall use Interface Protocol Code IP_VERSION_03_00.

The assigned codes can be found in Appendix A.6, “Audio Interface Protocol Codes” of this specification. All other

Protocol codes are unused and reserved by this specification for future use.

3.8 AUDIO FUNCTION CATEGORY

The Audio Function Category code is contained in the Class Specific Audio Control Interface descriptor as defined

by this specification. This code indicates the primary intended use for the Audio Function. The following Function

Categories are currently defined in this specification:

 Desktop Speaker: One or more speakers set up in a small environment to provide audio intended primarily for

one person.

 Home Theater: Several speakers set up in a moderately sized environment to provide audio levels significantly

louder than a Desktop Speaker setup and intended to be clearly heard by multiple people.

 Microphone: A device set up to record audio from audible sources.

 Headset: A device with at least one speaker and at least one microphone designed to be worn or held by a

user to provide personal audio playback and voice input capabilities.

 Telephone: A Headset or handset type device that also connects to a telephone system, (e.g. POTs, PBX, VoIP)

capable of making and receiving telephone calls.

 Converter: A device that allows conversion of audio from one electrical or optical format to another electrical

or optical format, and/or converting audio data from one encoding format to another (e.g. AC-3 to PCM, etc.).

 Voice/Sound recorder: A device set up with at least one microphone and at least one speaker that is designed

to operate, at least some of the time, independently of the Host to record and store audible sources and play

back its recorded content.

 IO Box: A device designed to deliver one or more, possibly different, electrical and optical inputs and outputs

for connection to other devices.

 Musical Instrument: A musical instrument, e.g. piano, guitar, synthesizer, drum machine, etc.

Release 3.0 September 22, 2016 23

 Pro-Audio: A device not typically used by consumers of audio, e.g. editing equipment, multitrack recording

equipment, etc.

 Audio/Video: The audio from a device that also supplies simultaneous video where the expectation is that the

audio is tightly coupled to the video, e.g. a camcorder, a DVD player, a television, etc.

 Control Panel: A device that is used to control the flow of audio through a system of audio devices, such as a

mixer panel.

 Other: Any device whose primary purpose is sufficiently different from the above descriptions as to be

considered a completely different form of device.

The assigned codes can be found in Appendix A.7, “Audio Function Category Codes” of this specification. All other

Category codes are unused and reserved by this specification for future use.

3.9 CLOCK DOMAINS

A Clock Domain is defined as a zone within which all sampling clocks are derived from the same master clock.

Therefore, within the same Clock Domain, all sampling clocks are synchronous and their timing relationship is

constant. However, the sampling clocks can be at different sampling frequencies. The master clock can be

generated in many different ways. An internal crystal could be the master clock; the USB start of frame (SOF) could

be used or even an externally supplied clock could serve as a master clock.

Multiple different Clock Domains may exist within the same Audio Function.

3.10 POWER DOMAINS

A Power Domain is defined as a zone within the Audio Function that groups one or more Entities and allows the

Host to control power consumption levels for that Domain. This way, the Host can potentially switch parts of the

Audio Function to lower power states when these parts are currently not in use, leading to an overall decrease in

power consumption. As an example, a USB headset may have two separate Power Domains, one for the output-

related functionality (headphone) and one for the input-related functionality (microphones). When the headset is

used to simply listen to music, the input-related functionality may be temporarily switched to a low power state

(or even completely off) to conserve power. This is especially important if the headset is used in conjunction with a

battery-powered device, such as a mobile phone or MP3 player, where extending battery life is important.

Multiple different Power Domains may exist within the same Audio Function. Power Domains are identified by a

unique Power Domain ID within the Audio Function.

3.11 AUDIO SYNCHRONIZATION TYPES

Each isochronous audio endpoint used in an AudioStreaming interface belongs to a synchronization type as

defined in Section 5 of the USB Specification. The following sections briefly describe the possible synchronization

types.

3.11.1 ASYNCHRONOUS

Asynchronous isochronous audio endpoints produce or consume data at a rate that is locked either to a clock

external to the USB or to a free-running internal clock. These endpoints are not synchronized to a start of frame

(SOF) or to any other clock in the USB domain.

Release 3.0 September 22, 2016 24

3.11.2 SYNCHRONOUS

The clock system of synchronous isochronous audio endpoints can be controlled externally through SOF or Bus

Interval synchronization. Such an endpoint shall lock its sample clock to the SOF tick or to the start of a new Bus

Interval.

3.11.3 ADAPTIVE

Adaptive isochronous audio endpoints are able to source or sink data at any rate within their operating range. This

implies that these endpoints shall run an internal process that allows them to match their natural data rate to the

data rate that is imposed at their interface.

3.11.4 IMPLICATIONS OF THE DIFFERENT SYNCHRONIZATION TYPES

The following sections provide some information on the impact the different synchronization types have on both

the Device and Host implementation. Several scenarios are considered and for each synchronization type, the

implications on Host and Device side are listed.

3.11.4.1 SINGLE DIRECTION SINK ENDPOINT

A typical example for this scenario is a USB speaker, implementing a sink endpoint that receives streaming audio

data from the Host.

 Asynchronous

o Host: The Host driver needs to be able to handle an explicit feedback endpoint. From the

feedback data, the Host then decides how many samples to send over the data streaming

endpoint in subsequent Bus Intervals.

o Device: The Device has its own local, free-running audio sample clock, which determines how

many samples are consumed by the Device each Bus Interval. The Device shall implement an

explicit feedback endpoint as well as the necessary logic to provide the correct feedback values

to send over said endpoint back to the Host. The advantage of this mode of operation is that it is

fairly easy to generate a robust, stable, jitter-free, high-quality audio sample clock (derived from

a crystal-based master clock, for example).

 Synchronous

o Host: The Host needs to send out a known number of bytes for each packet going to the Device.

The Host may need to generate a (fixed) pattern of audio samples to achieve the desired

sampling rate. As an example, to generate a sampling rate of 44.1 kHz in a Full-Speed

implementation, the Host needs to send a repeating pattern of nine packets containing 44 audio

samples, followed by one packet containing 45 audio samples.

o Device: This synchronization type requires the Device to implement either an audio clock PLL or

an ASRC.

 Adaptive

o Host: The Host may use any method or means to determine how many samples per Bus Interval

to transmit. Effectively operating as a “Synchronous-to-SOF” Source is an easy approach, but not

the only one allowed by the USB specification.

Release 3.0 September 22, 2016 25

o Device: This synchronization type requires the Device to implement either an audio clock PLL or

an ASRC to adapt to the average number of samples arriving over a certain period of time.

3.11.4.2 SINGLE DIRECTION SOURCE ENDPOINT

A typical example for this scenario is a USB microphone, implementing a source endpoint that sends streaming

audio data to the Host.

 Asynchronous

o Host: The Host needs to operate as an Adaptive Sink. Depending on the Host’s system design,

this may require an ASRC or an audio clock PLL on the Host side.

o Device: The Device has its own local, free-running audio sample clock, which determines how

many samples are produced by the Device each Bus Interval. The advantage of this mode of

operation is that it is fairly easy to generate a robust, stable, jitter-free, high-quality audio sample

clock (derived from a crystal-based master clock, for example).

 Synchronous

o Host: The Host receives a known number of audio samples in each packet coming from the

Device. The Host should expect a fixed pattern of audio samples to achieve the desired sampling

rate.

o Device: This synchronization type requires the Device to implement either an audio clock PLL to

lock on to the SOF or the start of Bus Interval and generate a high-quality audio sample clock

directly or use an ASRC as a bridge between the local and USB clock domains. The Device shall

generate a fixed packet size pattern as described in the USB Audio Data Formats Definition

document.

 Adaptive

o Host: This scenario requires the implementation of a feedforward OUT endpoint in the Device

that allows the Host to inform the Device how many samples per Bus Interval to send to the Host

over the streaming data IN endpoint.

o Device: This synchronization type requires the Device to implement an audio clock PLL or an

ASRC to adapt to the sample rate being communicated by the Host via the feedforward OUT

endpoint.

3.11.4.3 SOURCE AND SINK ENDPOINTS

A typical example for this scenario is a USB headset, implementing both a sink endpoint that receives streaming

audio data from the Host and a source endpoint that sends streaming audio data to the Host.

In general, the endpoints can be treated independently, using the same rules and guidelines as stated above. This

includes the ability for the Device to support separate clocks on each endpoint.

However, if the Device has its own clock and both data streams share this clock, the following two special cases

can be used to allow implicit feedback:

 Both endpoints are Asynchronous. In this case, the data rate that appears on the Source endpoint can be

used by the Host as implicit feedback to adjust the data rate transmitted to the Sink endpoint.

Release 3.0 September 22, 2016 26

 Both endpoints are Adaptive. In this case, the data rate that appears on the Sink endpoint can be used by

the Device to adjust the data rate transmitted by the Source endpoint.

Note: Using either of these two implicit feedback mechanisms would preclude the ability of an ADC 3.0 compliant

device from being able to use Power Domains to shut down either the source or the sink, as data must

remain flowing in both directions to provide the feedback/feedforward information.

3.12 INTER CHANNEL SYNCHRONIZATION

An important issue when dealing with audio, and 3-D audio in particular, is the phase relationship between

different physical audio channels. Indeed, the virtual spatial position of an audio source is directly related to and

influenced by the phase differences that are applied to the different physical audio channels used to reproduce the

audio source. Therefore, it is imperative that USB Audio Functions respect the phase relationship among all related

audio channels. However, the responsibility for maintaining the phase relation is shared among the USB host

software, hardware, and all of the audio peripheral devices or functions.

3.13 AUDIO FUNCTION TOPOLOGY

To be able to manipulate the physical properties of an Audio Function, its functionality shall be divided into

addressable Entities. Two types of such generic Entities are identified and are called Units and Terminals. In

addition, a special type of Entity is defined. These Entities are called Clock Entities and they are used to describe

and manipulate the clock signals inside the Audio Function.

Units provide the basic building blocks to fully describe most Audio Functions. Audio Functions are built by

connecting together several of these Units. A Unit has one or more Input Pins and a single Output Pin, where each

Pin represents a Cluster of logical audio channels inside the Audio Function (see Section 3.13.1, “Cluster”). Units

are wired together by connecting their I/O Pins according to the required topology. Note that it is perfectly legal to

connect the Output Pin of an Entity to multiple Input Pins residing on different other Entities, effectively creating a

one-to-many connection.

In addition, the concept of a Terminal is introduced. There are two types of Terminals. An Input Terminal (IT) is an

Entity that represents a starting point for audio channels inside the Audio Function. An Output Terminal (OT)

represents an ending point for audio channels inside the Audio Function. From the Audio Function’s perspective, a

USB endpoint is a typical example of an Input or Output Terminal. It either provides data streams to the Audio

Function (IT) or consumes data streams coming from the Audio Function (OT). Likewise, a Digital to Analog

converter, built into the Audio Function is represented as an Output Terminal in the Audio Function’s model.

Connection to the Terminal is made through its single Input or Output Pin.

Input Pins of a Unit are numbered starting from one up to the total number of Input Pins on the Unit. The Output

Pin number is always one. Input Terminals have only one Output Pin and its number is always one. Output

Terminals have only one Input Pin and it is always numbered one.

The information, traveling over I/O Pins is not necessarily of a digital nature. It is perfectly possible to use the Unit

model to describe fully analog or even hybrid Audio Functions. The mere fact that I/O Pins are connected together

is a guarantee (by construction) that the protocol and format, used over these connections (analog or digital), is

compatible on both ends.

Every Unit in the Audio Function is fully described by its associated Unit descriptor (UD). The Unit descriptor

contains all necessary fields to identify and describe the Unit. Likewise, there is a Terminal descriptor (TD) for every

Release 3.0 September 22, 2016 27

Terminal in the Audio Function. In addition, these descriptors provide all necessary information about the topology

of the Audio Function. They fully describe how Terminals and Units are interconnected.

This specification describes the following types of standard Units and Terminals that are considered adequate to

represent most Audio Functions:

 Input Terminal (IT)

 Output Terminal (OT)

 Mixer Unit (MU)

 Selector Unit (SU)

 Feature Unit (FU)

 Sampling Rate Converter Unit (RU)

 Effect Unit (EU)

 Processing Unit (PU)

 Extension Unit (XU)

Besides Units and Terminals, the concept of a Clock Entity is introduced. Three types of Clock Entities are defined

by this specification:

 Clock Source (CS)

 Clock Selector (CX)

 Clock Multiplier (CM)

A Clock Source provides a certain sampling clock frequency to all or part of the Audio Function. A Clock Source can

represent an internal sampling frequency generator, but it can also represent an external sampling clock signal

input to the Audio Function.

A Clock Source has a single Clock Output Pin that carries the sampling clock signal, represented by the Clock

Source. The Clock Output Pin number is always one.

A Clock Selector is used to select between multiple sampling clock signals that might be available inside an Audio

Function. It has multiple Clock Input Pins and a single Clock Output pin. Clock Input Pins are numbered starting

from one up to the total number of Clock Input Pins on the Clock Selector. The Clock Output Pin number is always

one.

A Clock Multiplier is used to derive a new clock signal with a different frequency from the clock signal at its single

Clock Input Pin. It does this by multiplying that clock signal frequency by a numerator P and then dividing it by a

denominator Q. The new clock signal is guaranteed to be synchronous with the input clock signal. A Clock

Multiplier has one Input Pin and one Output Pin and their numbers are always one. An implementation can choose

to make the values P and Q programmable, although most Audio Functions will expose P and Q Controls as Read-

Only and report any changes to those values via the interrupt mechanism. Such changes may be necessary when

the Audio Function detects a change in native sampling rate for incoming encoded content, for example.

By using a combination of Clock Source, Clock Selector, and Clock Multiplier Entities, the most complex clock

systems can be represented and exposed to Host software.

Clock Input and Output Pins are fundamentally different from Input and Output Pins defined for Units and

Terminals. Clock Pins carry only clock signals and therefore cannot be connected to Unit or Terminal Input and

Output Pins. They are only used to express clock circuitry topology.

Release 3.0 September 22, 2016 28

Each Input and Output Terminal has a single Clock Input Pin that is connected to a Clock Output Pin of a Clock

Entity. The clock signal carried by that Clock Output Pin determines at which sampling frequency the hardware

represented by the Terminal is operating.

Each Sampling Rate Converter Unit has two Clock Input Pins that are typically connected to the Clock Output Pins

of two different Clock Entities. The clock signals carried by those Clock Output Pins determine the sampling

frequencies between which the Sampling Rate Converter Unit is converting.

Each Clock Entity is described by a Clock Entity descriptor (CED). The Clock Entity descriptor contains all necessary

fields to identify and describe the Clock Entity.

The descriptors are further detailed in Section 4, “Descriptors” of this document.

The ensemble of Unit descriptors, Terminal descriptors and Clock Entity descriptors provide a full description of

the Audio Function to the Host. This information is typically retrieved from the device at enumeration time. By

parsing the descriptors, a generic audio driver should be able to fully control the Audio Function, except for the

functionality represented by Extension Units. Those require vendor-specific extensions to the audio class driver.

Important Note:

 The complete set of Audio Function descriptors provides only a static initial description of the Audio

Function. During operation, a number of events can happen that force the Audio Function to change its

state. Host software shall be notified of these changes to remain ‘in sync’ with the Audio Function at all

times. An extensive interrupt mechanism is in place to report any and all state changes to Host

software.

Figure 3-3, “Inside the Audio Function” illustrates the concepts defined above. Using the iconic symbols defined

further, it describes a hypothetical Audio Function that incorporates 15 Entities: three Input Terminals, five Units,

three Output Terminals, two Clock Sources, a Clock Selector, and one Clock Multiplier. Each Entity has its unique ID

(from 1 to 15) and descriptor that fully describes the functionality of the Entity and also how that particular Entity

is connected into the overall topology of the Audio Function.

Input Terminal 1 (IT 1) is the representation of a USB OUT endpoint used to stream audio from the Host to the

audio device. IT 2 is the representation of an analog Line-In connector on the audio device whereas IT 3 is an

analog Microphone-In connector on the audio device. Selector Unit 4 (SU 4) selects between the audio coming

from the Host and the audio present at the Line-In connector. Feature Unit 5 (FU 5) is then used to manipulate the

audio (Volume, Bass, Treble …) before it is presented to Output Terminal 9 (OT 9). OT 9 is the representation of a

Headphone Out jack on the audio device.

At the same time, all three input sources (USB OUT, Line-In, and Mic-In) are connected to a Mixer Unit 6 (MU 6)

that effectively mixes the three sources together. The output of the Mixer is then fed into a Processing Unit 7 (PU

7) that performs some audio processing algorithm(s) on the mix. The result is in turn sent to FU 8 where some final

adjustments to the audio (Volume …) are made. FU 8 is connected to OT 10 and OT 11. OT 10 represents speakers

incorporated into the audio device and OT 11 represents a USB IN endpoint used to send the processed audio to

the Host for recording purposes.

Clock Source 12 (CS 12) represents an internal sampling frequency generator, running at 96 kHz for instance. Clock

Source 15 (CS 15) is the representation of an external master sampling clock input that can be used to synchronize

the device to an external source. Clock Selector 13 (CS 13) enables selection between the two available Clock

Sources. The output of CS 13 provides a sampling frequency to IT 1, IT 2, IT3, OT 10, and OT 11 of 96 kHz. Clock

Multiplier CM 14 further multiplies that clock signal by 0.5, providing a sampling frequency of 48 kHz to OT 9 for

Release 3.0 September 22, 2016 29

driving the headphone. Since all sampling frequencies used inside the Audio Function are at all times derived from

a single master clock (internal or external), all audio streams in the Audio Function are synchronous.

The descriptors, associated with each Entity clearly indicate to the Host what the exact nature of each Entity is. For

instance, the IT 2 descriptor contains a field that indicates to the Host that it represents an external connector on

the device, used as an analog Line In. Likewise, the MU 6 descriptor has a field that indicates that its Input Pin 1 is

connected to the Output Pin of IT 1, Input Pin 2 is connected to the Output Pin of IT 2, and Input Pin 3 is connected

to the Output Pin of IT 3.

For further details on descriptor contents, refer to Section 4, “Descriptors” of this document.

Figure 3-3: Inside the Audio Function

Inside an Entity, functionality is further described through Audio Controls. A Control typically provides access to a

specific audio or clock property. Each Control has a set of attributes that can be manipulated or that present

additional information on the behavior of the Control. A Control can have the following attributes:

 Current setting attribute

 Range attribute triplet consisting of:

 Minimum setting attribute

Release 3.0 September 22, 2016 30

 Maximum setting attribute

 Resolution attribute

As an example, consider a Volume Control inside a Feature Unit. By issuing the appropriate Get requests, the Host

software can obtain values for the Volume Control’s attributes and, for instance, use them to correctly display the

Control on the screen. Setting the Volume Control’s current attribute allows the Host software to change the

volume setting of the Volume Control.

Additionally, each Entity in an Audio Function can have a memory space attribute. This attribute optionally

provides generic access to the internal memory space of the Entity. This could be used to implement vendor-

specific control of an Entity through generically provided access.

3.13.1 CLUSTER

A Cluster is a grouping of audio channels that carry tightly related synchronous audio information. Inside the Audio

Function, complete abstraction is made of the actual physical representation form of the audio data that travels

over the connections among Terminals and Units. Each audio channel in the Cluster is considered to be a logical

channel and all the physical attributes of the channel (bit width, bit resolution, etc.) are not specified and

considered irrelevant in the context of the Audio Function as seen through the AudioControl interface. The fact

that an Input Pin and an Output Pin are connected together in the Audio Function’s topology is a guarantee (by

construction) that the information flowing over the connection is compatible with both Entities that are

connected.

Channel numbering in the Cluster starts with channel one up to the number of channels in the Cluster. The virtual

channel zero is used to address a master Control in a Unit (if present), effectively influencing all the channels at

once. Note that the master Control (if present) shall be implemented separate from the per-channel Controls.

Changing the setting of a master Control does not affect the settings of any of the individual channel Controls. The

maximum number of independent channels in a Cluster is limited to 255 (Channel zero is used to reference the

master channel).

A Cluster is characterized by a number of attributes:

 A unique identifier for the Cluster

 The number of audio channels in the Cluster

 The purpose of each audio channel, such as Voice, Speech, etc.

 The audio channel relationship (or spatial location) of each audio channel in the Cluster

 An indication whether an audio channel is part of an Ambisonic group

There is a Cluster descriptor (CD) associated with each Cluster that fully describes the Cluster.

There are two types of Clusters used in this specification:

 A logical Cluster describes audio channels within the Audio Function (the closed box) where audio channels

are treated as logical concepts.

 A physical Cluster describes physical audio channels, for example when travelling over a connector.

3.13.2 INPUT TERMINAL

The Input Terminal (IT) is used to interface between the Audio Function’s ‘outside world’ and other Units in the

Audio Function. It serves as a receptacle for audio information flowing into the Audio Function. Its function is to

represent a source of incoming audio data after this data has been properly extracted from the original audio

Release 3.0 September 22, 2016 31

stream into the separate logical channels that are embedded in this stream (the decoding process). The logical

channels are grouped into a Cluster and leave the Input Terminal through a single Output Pin.

An Input Terminal can represent inputs to the Audio Function other than USB OUT endpoints. A Line-In connector

on an audio device is an example of such a non-USB input. However, if the audio stream is entering the Audio

Function by means of a USB OUT endpoint, there is a one-to-one relationship between the AudioStreaming

interface that contains this endpoint and its associated Input Terminal. The class-specific interface descriptor

contains a field that holds a direct reference to this Input Terminal. The Host needs to use both the

AudioStreaming interface and endpoint descriptors and the Input Terminal descriptor to get a full understanding of

the characteristics and capabilities of the Input Terminal. Stream-related parameters are stored in the

AudioStreaming interface descriptors. Control-related parameters are stored in the Terminal descriptor.

The conversion process from incoming, possibly encoded, audio streams to logical audio channels always involves

some kind of decoding engine. The decoding types range from rather trivial decoding schemes like converting

interleaved stereo 16 bit PCM data into a Left and Right logical channel to very sophisticated schemes like

converting an MPEG-2 7.1 encoded audio stream into Front Left, Front Left of Center, Front Center, Front Right of

Center, Front Right, Back Left, Back Right and Low Frequency Effects logical channels. The decoding engine is

considered part of the Entity that actually receives the encoded audio data streams (like a USB AudioStreaming

interface). The type of decoding is therefore implied by the value in the bmFormats field, located in the class-

specific AudioStreaming interface descriptor. The associated Input Terminal deals with the logical channels after

they have been decoded.

An Input Terminal has a single Clock Input Pin. The clock signal present at that Pin is used as the sampling clock for

all underlying hardware that is represented by this Input Terminal. There is a field in the Input Terminal descriptor

that uniquely identifies the Clock Entity to which the Input Terminal is connected.

The symbol for the Input Terminal is depicted in the following figure:

Figure 3-4: Input Terminal Icon

3.13.3 OUTPUT TERMINAL

The Output Terminal (OT) is used to interface between Units inside the Audio Function and the ‘outside world’. It

serves as an outlet for audio information, flowing out of the Audio Function. Its function is to represent a sink of

outgoing audio data before this data is properly packed from the original separate logical channels into the

outgoing audio stream (the encoding process). The Cluster enters the Output Terminal through a single Input Pin.

An Output Terminal can represent outputs from the Audio Function other than USB IN endpoints. A speaker built

into an audio device or a Line Out connector is an example of such a non-USB output. However, if the audio stream

is leaving the Audio Function by means of a USB IN endpoint, there is a one-to-one relationship between the

AudioStreaming interface that contains this endpoint and its associated Output Terminal. The class-specific

interface descriptor contains a field that holds a direct reference to this Output Terminal. The Host needs to use

both the AudioStreaming interface and endpoint descriptors and the Output Terminal descriptor to fully

Release 3.0 September 22, 2016 32

understand the characteristics and capabilities of the Output Terminal. Stream-related parameters are stored in

the AudioStreaming interface descriptors. Control-related parameters are stored in the Terminal descriptor.

The conversion process from incoming logical audio channels to possibly encoded audio streams always involves

some kind of encoding engine. The encoding engine is considered part of the Entity that actually transmits the

encoded audio data streams (like a USB AudioStreaming interface). The type of encoding is therefore implied by

the value in the bmFormats field, located in the class-specific AudioStreaming interface descriptor. The associated

Output Terminal deals with the logical channels before encoding.

An Output Terminal has a single Clock Input Pin. The clock signal present at that Pin is used as the sampling clock

for all underlying hardware that is represented by this Output Terminal. There is a field in the Output Terminal

descriptor that uniquely identifies the Clock Entity to which the Output Terminal is connected.

The symbol for the Output Terminal is depicted in the following figure:

Figure 3-5: Output Terminal Icon

3.13.4 MIXER UNIT

The Mixer Unit (MU) transforms a number of logical input channels into a number of logical output channels. The

input channels are grouped into one or more Clusters. Each Cluster enters the Mixer Unit through an Input Pin. The

logical output channels are grouped into one Cluster and leave the Mixer Unit through a single Output Pin.

Every input channel can virtually be mixed into all of the output channels. If n is the total number of input channels

and m is the number of output channels, then there is a two-dimensional array (n · m) of Mixer Controls in the

Mixer Unit. Not all of these Controls have to be physically implemented. Some Controls can have a fixed setting

and be non-programmable. The Mixer Unit descriptor reports which Controls are programmable in the bmControls

bitmap field. Using this model, a permanent connection can be implemented by reporting the Control as non-

programmable in the bmControls bitmap and by returning a Control setting of 0 dB when requested. Likewise, a

missing (muting) connection can be implemented by reporting the Control as non-programmable in the

bmControls bitmap and by returning a Control setting of – dB. A Mixer Unit SHALL respond to the appropriate

Get Request to allow the Host to retrieve the actual settings on each of the (n · m) Mixer Controls.

The symbol for the Mixer Unit can be found in the following figure:

Release 3.0 September 22, 2016 33

Figure 3-6: Mixer Unit Icon

3.13.5 SELECTOR UNIT

The Selector Unit (SU) selects from n Clusters, each containing m logical input channels and routes them unaltered

to the single output Cluster, containing m output channels. It represents a multi-channel source selector, capable

of selecting between n m-channel sources. It has n Input Pins and a single Output Pin.

The symbol for the Selector Unit can be found in the following figure:

Figure 3-7: Selector Unit Icon

3.13.6 FEATURE UNIT

The Feature Unit (FU) is essentially a multi-channel processing unit that provides basic manipulation of multiple

single-parameter Audio Controls on the incoming logical channels. For each logical channel, the Feature Unit

optionally provides Audio Controls for the following features:

 Mute

 Volume

 Tone Control (Bass, Mid, Treble)

 Graphic Equalizer

 Automatic Gain Control

 Delay

 Bass Boost

 Loudness

 Input Gain

 Input Gain Pad

 Phase Inverter

In addition, the Feature Unit optionally provides the above Audio Controls but now influencing all channels of the

Cluster at once. In this way, ‘master’ Controls can be implemented. The master Controls are cascaded after the

individual channel Controls. This setup is especially useful in multi-channel systems where the individual channel

Controls can be used for channel balancing and the master Controls can be used for overall settings.

The logical channels in the Cluster are numbered from one to the total number of channels in the Cluster. The

‘master’ channel has channel number zero and is always virtually present.

Release 3.0 September 22, 2016 34

The Feature Unit descriptor reports what Controls are present for every channel in the Feature Unit and for the

‘master’ channel. All logical channels in a Feature Unit are fully independent. There exist no cross couplings among

channels within the Feature Unit. There are as many logical output channels, as there are input channels. These

are grouped into one Cluster that enters the Feature Unit through a single Input Pin and leaves the Unit through a

single Output Pin.

The symbol for the Feature Unit is depicted in the following figure:

Figure 3-8: Feature Unit Icon

3.13.7 SAMPLING RATE CONVERTER UNIT

The Sampling Rate Converter (SRC) Unit (RU) is included here as an optional way to indicate where exactly within

the Audio Function sampling rate conversion takes place. In many cases, it is unnecessary to indicate this point and

any SRC Unit can be omitted from the topology without materially affecting the information presented to the Host.

The primary reason to include the SRC Unit is to accurately report any latencies incurred by the Sampling Rate

Conversion process.

The Sampling Rate Converter Unit provides a bridge function between different clock domains within the Audio

Function. The Sampling Rate Converter does not provide any Audio Controls. It takes the audio on all the logical

channels in the single input Cluster belonging to a certain clock domain and converts them into the same logical

channels in the single output Cluster but now belonging to another clock domain.

There are as many logical output channels, as there are input channels. These are grouped into one Cluster that

enters the SRC Unit through a single Input Pin and leaves the Unit through a single Output Pin.

A SRC Unit has two Clock Input Pins. One Clock Input Pin is associated with the single Input Pin of the SRC Unit. The

other Clock Input Pin is associated with the single Output Pin of the SRC Unit. The clock signals present at those

two Clock Input Pins identify the two clock domains between which the SRC Unit is converting. Note that it is

allowed to have both Clock Input Pins connected to clock signals belonging to the same clock domain.

The symbol for the SRC Unit is depicted in the following figure:

Release 3.0 September 22, 2016 35

Figure 3-9: Sampling Rate Converter Unit Icon

3.13.8 EFFECT UNIT

The Effect Unit (EU) is a multi-channel processing unit that provides advanced manipulation of a multi-parameter

Audio Control on the incoming logical channels on a per-channel basis. For each logical channel, the Effect Unit

provides one of the following Audio Controls:

 Parametric Equalizer Section

 Reverberation

 Modulation Delay

 Dynamic Range Compressor

In addition, the Effect Unit optionally provides one of the above Audio Controls but now influencing all channels of

the Cluster at once. In this way, a ‘master’ Control can be implemented. The master Control is cascaded after the

individual channel Controls. This setup is especially useful in multi-channel systems where the individual channel

Controls can be used for channel balancing and the master Control can be used for overall settings.

The logical channels in the Cluster are numbered from one to the total number of channels in the Cluster. The

‘master’ channel has channel number zero and is always virtually present.

The Effect Unit descriptor reports what Controls are present for every channel in the Effect Unit and for the

‘master’ channel. All logical channels in an Effect Unit are fully independent. There exist no cross couplings among

channels within the Effect Unit. There are as many logical output channels, as there are input channels. These are

grouped into one Cluster that enters the Effect Unit through a single Input Pin and leaves the Unit through a single

Output Pin.

If the Effect Unit is an explicit member of a Power Domain, then switching the Power Domain to any Power State

other than D0 shall render the Unit non-functional and its output is undefined. Explicit bypass functionality may be

required to preserve the integrity of the signal path.

3.13.8.1 PARAMETRIC EQUALIZER SECTION EFFECT UNIT

The Parametric Equalizer Section (PEQS) Effect Unit is used to manipulate and equalize the frequency

characteristics of the original audio information around a certain center frequency. In order to build a parametric

equalizer, a number of these PEQS Effect Units may need to be cascaded to obtain the desired functionality. The

parameters that can be manipulated to obtain the desired equalizing effect are:

 Center Frequency: the frequency around which the audio spectrum is manipulated. Expressed in Hz.

 Q Factor: a measure for the range of frequencies around the center frequency that are influenced. Expressed

as a ratio.

 Gain: the amount of gain or attenuation at the center frequency. Expressed in dB.

The algorithm to produce the desired equalization effect can be manipulated on a per-channel basis. The master

channel concept allows equalization for all channels simultaneously.

Release 3.0 September 22, 2016 36

The symbol for the PEQS Processing Unit can be found in the following figure:

Figure 3-10: PEQS Effect Unit Icon

3.13.8.2 REVERBERATION EFFECT UNIT

The Reverberation Effect Unit is used to add room acoustics effects to the original audio information. These effects

can range from small room reverberation effects to simulation of a large concert hall reverberation. A number of

parameters can be manipulated to obtain the desired reverberation effects.

 Reverb Type: Room1, Room2, Room3, Hall1, Hall2, Plate, Delay, and Panning Delay.

 Reverb Level: sets the amount of reverberant sound versus the original sound. Expressed as a ratio.

 Reverb Time: sets the time over which the reverberation will continue. Expressed in s.

 Reverb Delay Feedback: used with Reverb Types Delay and Delay Panning. Sets the way in which delay

repeats. Expressed as a ratio.

 Reverb Pre-Delay: sets the delay time between original sound and initial reverb reflection. Expressed in ms.

 Reverb Density: sets the density of the reverb reflections.

 Reverb Hi-Freq Roll-Off: sets the cut-off frequency of a low pass filter on the reflections. Expressed in Hz.

It is entirely left to the designer how a certain reverberation effect is obtained. It is not the intention of this

specification to precisely define all the parameters that influence the reverberation experience (for instance in a

multi-channel system, it is possible to create very similar reverberation impressions, using different algorithms and

parameter settings on all channels).

The symbol for the Reverberation Effect Unit can be found in the following figure:

Figure 3-11: Reverberation Effect Unit Icon

3.13.8.3 MODULATION DELAY EFFECT UNIT

The Modulation Delay Effect Unit is used to add modulation (like chorus) effects to the original audio information.

A number of parameters can be manipulated to obtain the desired modulation effects.

 Modulation Delay Balance: controls the ratio of the original sound to that of the effected sound. Expressed as

a ratio.

 Modulation Delay Rate: sets the speed (frequency) of the modulator. Expressed in Hz.

 Modulation Delay Depth: sets the depth at which the sound is modulated. Expressed in ms.

Release 3.0 September 22, 2016 37

 Modulation Delay Time: sets the delay that is added to the modulated sound before adding it to the original

sound. Expressed in ms.

 Modulation Delay Feedback Level: controls the amount of the modulated sound that is routed back to the

input of the modulator unit. Expressed as a ratio.

It is entirely left to the designer how a certain modulation effect is obtained.

The symbol for the Modulation Delay Effect Unit can be found in the following figure:

Figure 3-12: Modulation Delay Effect Unit Icon

3.13.8.4 DYNAMIC RANGE COMPRESSOR EFFECT UNIT

The Dynamic Range Compressor Effect Unit is used to intelligently limit the dynamic range of the original audio

information. A number of parameters can be manipulated to influence the desired compression.

Figure 3-13: Dynamic Range Compressor Transfer Characteristic

 Compression ratio R: determines the slope of the static input-to-output transfer characteristic in the

compressor’s active input range. The compression is defined in terms of the compression ratio R, which is the

inverse of the derivative of the output power PO as a function of the input power PI when PO and PI are

expressed in dB.

Release 3.0 September 22, 2016 38

𝑅−1 =
𝜕𝐿𝑜𝑔(

𝑃𝑂

𝑃𝑅
)

𝜕𝐿𝑜𝑔(𝑃𝐼/𝑃𝑅)

PR is the reference level and it is made equal to the so-called line level. All levels are expressed relative to the

line level (0 dB), which is usually 15-20 dB below the maximum level. Compression is obtained when R > 1,

R = 1 does not affect the signal and R < 1 gives rise to expansion.

 Maximum Amplitude: the upper boundary of the active input range, relative to the line level (0 dB). Expressed

in dB.

 Threshold level: the lower boundary of the active input level, relative to the line level (0 dB).

 Attack Time: determines the response of the compressor as a function of time to a step in the input level.

Expressed in ms.

 Release Time: relates to the recovery time of the gain of the compressor after a loud passage. Expressed in

ms.

 Make-up Gain: set to compensate for the gain loss in the compressor. Expressed in dB.

It is entirely left to the designer how a certain dynamic range compression is obtained.

The symbol for the Dynamic Range Compressor Effect Unit can be found in the following figure:

Figure 3-14: Dynamic Range Compressor Effect Unit Icon

3.13.9 PROCESSING UNIT

The Processing Unit (PU) represents a functional block inside the Audio Function that transforms a number of

logical input channels, grouped into one or more Clusters into a number of logical output channels, grouped into

one Cluster. Therefore, the Processing Unit can have multiple Input Pins and has a single Output Pin. This

specification defines several standard transforms (algorithms) that are considered necessary to support additional

Audio Functionality; these transforms are not covered by the other Unit types but are commonplace enough to be

included in this specification so that a generic driver can provide control for it.

If it is necessary to be able to bypass the functionality incorporated in the Processing Unit, then an explicit bypass

topology using a Selector Unit shall be implemented.

If the Processing Unit is an explicit member of a Power Domain, then switching the Power Domain to any Power

State other than D0 shall render the Unit non-functional and its output is undefined. Explicit bypass functionality

may be required to preserve the integrity of the signal path.

3.13.9.1 UP/DOWN-MIX PROCESSING UNIT

The Up/Down-mix Processing Unit provides facilities to derive m output audio channels from n input audio

channels. The algorithms and transforms applied to accomplish this are not defined by this specification and can

be proprietary. The input channels are grouped into one input channel Cluster that enters the Processing Unit over

a single Input Pin. Likewise, all output channels are grouped into one output channel Cluster, leaving the

Processing Unit over a single Output Pin.

Release 3.0 September 22, 2016 39

The Up/Down-mix Processing Unit can support multiple modes of operation. The available input audio channels

are dictated by the Entity to which the Up/Down-mix Processing Unit is connected. The Up/Down-mix Processing

Unit descriptor reports which up/down-mixing modes the Unit supports through its waClusterDescrID() array.

Each element of the waClusterDescrID () array indicates which output channels in the output Cluster are

effectively used in a particular mode. The unused output channels in the output Cluster shall produce muted

output. Mode selection is implemented using the Get/Set Mode Select Control request.

As an example, consider the case where an Up/Down-mix Processing Unit is connected to an Input Terminal,

producing Dolby AC-3 5.1 decoded audio. The input Cluster to the Up/Down-mix Processing Unit therefore

contains Left, Right, Center, Left Surround, Right Surround and LFE logical channels.

Suppose the Audio Function’s hardware is limited to reproducing only dual channel audio. Then the Up/Down-mix

Processing Unit could use some (sophisticated) algorithms to down-mix the available spatial audio information into

two (‘enriched’) channels so that the maximum spatial effects can be experienced, using only two channels. It is

left to the implementation to use the appropriate down-mix algorithm depending on the physical nature of the

Output Terminal to which the Up/Down-mix Processing Unit is routed. For instance, a different down-mix

algorithm is needed whether the ‘enriched’ stereo stream is sent to a pair of speakers or to a headphone set.

However, this knowledge already resides within the Audio Function and deciding which down-mix algorithm to use

does not need Host intervention.

As a second interesting example, suppose the hardware is capable of servicing eight discrete audio channels (for

example, a full-fledged MPEG-2 7.1 system). Now the Up/Down-mix Processing Unit could use certain techniques

to derive meaningful content for the extra audio channels (Left of Center, Right of Center) that are present in the

output Cluster and are missing in the input channel Cluster (AC-3 5.1). This is a typical example of an up-mix

situation.

The symbol for the Up/Down-mix Processing Unit is depicted in the following figure:

Figure 3-15: Up/Down-mix Processing Unit Icon

3.13.9.2 STEREO EXTENDER PROCESSING UNIT

The Stereo Extender Processing Unit operates on Left and Right channels only. It processes an existing stereo (two

channel) soundtrack to expand the sound field and to make it appear to originate from outside the Front Left/Right

speaker locations. Extended stereo effects can be achieved via various methods. The algorithms and transforms

applied to accomplish this are not defined by this specification and can be proprietary. The perceived width of the

sound field can be controlled using the Get/Set Width Control request.

The symbol for the Stereo Extender Unit is depicted in the following figure:

Release 3.0 September 22, 2016 40

Figure 3-16: Stereo Extender Processing Unit Icon

3.13.9.3 MULTI-FUNCTION PROCESSING UNIT

The Multi-Function Processing Unit groups together different but related algorithmic blocks that together provide

a certain functionality. This specification defines several algorithms that are considered useful and commonplace

enough to be included in this specification.

The following algorithms are currently supported:

 Algorithm Undefined

 Beam Forming Algorithm

 Acoustic Echo Cancellation Algorithm

 Active Noise Cancellation Algorithm

 Blind Source Separation Algorithm

 Noise Suppression/Reduction

The Multi-Function Processing Unit descriptor contains a bitmap, indicating which algorithms are supported by the

Unit. The exact implementation of these algorithms and how they may interact is implementation-dependent.

Note 1: If there is a need to expose to the Host how the algorithms are interconnected, a designer may

choose to model the assembly of algorithms using multiple Multi-Function Processing Units, each

containing just one or a subset of algorithms and explicitly connecting them together.

Note 2: Most of the algorithms mentioned above involve some form of signal processing that cannot be

assumed to be linear and time invariant.

During normal operation, the Multi-Function Processing Unit transforms a number of logical input channels that

enter the Unit over one or more Input Pins into a number of logical output channels that leave the Unit over a

single Output Pin.

If it is necessary to be able to bypass the functionality incorporated in the Multi-Function Processing Unit, then an

explicit bypass topology using a Selector Unit shall be implemented.

It is strongly recommended to implement the bypass functionality so that a generic audio driver that does not

understand what functionality is implemented in the Multi-Function Processing Unit will be capable of removing it

from the signal path.

The symbol for the Multi-Function Processing Unit is depicted in the following figure:

Release 3.0 September 22, 2016 41

Figure 3-17 Multi-Function Processing Unit Icon

3.13.10 EXTENSION UNIT

The Extension Unit (XU) is the method provided by this specification to easily add vendor-specific building blocks to

the specification. The Extension Unit provides one or more logical input channels, grouped into one or more

Clusters and transforms them into a number of logical output channels, grouped into one Cluster. Therefore, the

Extension Unit can have multiple Input Pins and has a single Output Pin.

If it is necessary to be able to bypass the functionality incorporated in the Extension Unit, then an explicit bypass

topology using a Selector Unit shall be implemented.

It is strongly recommended to implement the bypass functionality so that a generic audio driver that does not

understand what functionality is implemented in the Extension Unit will be capable of removing it from the signal

path.

If the Extension Unit is an explicit member of a Power Domain, then switching the Power Domain to any Power

State other than D0 shall render the Unit non-functional and its output is undefined. Explicit bypass functionality

may be required to preserve the integrity of the signal path.

The symbol for the Extension Unit can be found in the following figure:

Figure 3-18: Extension Unit Icon

3.13.11 CLOCK ENTITIES

Clock Entities are special in the sense that they do not directly manipulate logical audio streams. Instead, they

provide the functionality needed to manipulate sampling clock signals and clock routing for the different Input and

Output Terminals within the Audio Function. A Terminal inside the Audio Function can only be connected to one

Clock Entity. The clock signal present at the Clock Input Pin of a Terminal determines the sampling frequency at

which the underlying hardware is operating.

3.13.11.1 CLOCK SOURCE

A Clock Source Entity provides an independent sampling clock signal on its single Clock Output Pin. The Clock

Source Entity serves as the master clock for a Clock Domain. Several different other synchronous sampling

frequencies can be derived by connecting multiple Clock Multiplier Entities to the same Clock Source Entity. By

Release 3.0 September 22, 2016 42

manipulating the Sampling Frequency Control inside the Clock Source Entity, all sampling frequencies in the Clock

domain are influenced.

Each independent master sampling clock inside the Audio Function shall be represented by a separate Clock

Source Entity. Even if the clock is generated ‘inside a Terminal’, that clock needs to be represented by a Clock

Source Entity. As an example, a sampling clock could be recovered based on the amount of audio samples coming

into the Audio Function over a USB OUT adaptive endpoint. Alternatively, a sampling clock may be derived from

the S/PDIF signal coming into the Audio Function on an external connector.

Note: In the case of an adaptive isochronous data endpoint that support only a discrete number of sampling

frequencies, the endpoint shall at least tolerate 1000 PPM inaccuracy on the reported Sampling

Frequency Control values to accommodate sample clock inaccuracies.

The Clock Source Entity descriptor contains a field that indicates the origin of the actual clock signal, represented

by the Entity. Furthermore, since Input and Output Terminals only have a Clock Input Pin, a clock signal can never

be generated from a Terminal directly.

The output of a Clock Source Entity does not have to be valid at all times. For instance, if a Clock Source Entity

represents an external sampling clock input on the Audio Function, the output of that Clock Source might not be

valid when there is nothing connected to the external clock input. The Clock Source can be queried for the validity

of its output signal at all times.

The symbol for the Clock Source Entity can be found in the following figure:

Figure 3-19: Clock Source Icon

3.13.11.2 CLOCK SELECTOR

A Clock Selector Entity provides the functionality to select among different available sampling clock signals. It can

have n Clock Input Pins from which one is routed to the single Clock Output Pin.

Switching between Clock Inputs can be Host controlled (the Clock Selector is programmable via the appropriate Set

request) or the Audio Function can switch Clock Inputs due to some external event. A Clock Selector may support

both control methods. The Clock Selector can notify the Host of the change by generating the appropriate

interrupt.

The symbol for the Clock Selector Entity can be found in the following figure:

Release 3.0 September 22, 2016 43

Figure 3-20: Clock Selector Icon

3.13.11.3 CLOCK MULTIPLIER

A Clock Multiplier Entity provides the functionality to derive a new sampling clock signal frequency from the

sampling clock signal, present at its single Clock Input Pin. The algorithm used to derive the new clock signal is not

defined by this specification. However, there is a requirement that the output clock signal shall be synchronous to

the input clock signal so that both clocks belong to the same Clock Domain. A Clock Multiplier Entity contains a

multiplier followed by a divider. Both the multiplication factor P and division factor Q can be programmable and in

the range [1, 216-1]. The resulting sampling frequency is obtained by multiplying the input signal frequency by P/Q.

The symbol for the Clock Multiplier Entity can be found in the following figure:

Figure 3-21: Clock Multiplier Icon

3.14 OPERATIONAL MODEL

A device can support multiple configurations. Within each configuration can be multiple interfaces, each possibly

having Alternate Settings. These interfaces can pertain to different functions that co-reside in the same composite

device. Even several independent Audio Functions can exist in the same device. Interfaces, belonging to the same

Audio Function are grouped into an Audio Interface Association. If the device contains multiple independent Audio

Functions, there shall be multiple Audio Interface Associations, each providing full access to their associated Audio

Function.

As an example of a composite device, consider a PC monitor equipped with a built-in stereo speaker system. Such

a device could be configured to have one interface dealing with configuration and control of the monitor part of

the device (HID Class), while a Collection of two other interfaces deals with its audio aspects. One of those, the

AudioControl interface, is used to control the inner workings of the function (Volume Control etc.) whereas the

other, the AudioStreaming interface, handles the data traffic, sent to the monitor’s audio subsystem.

The AudioStreaming interface could be configured to operate in mono mode (Alternate Setting x) in which only a

single channel data stream is sent to the Audio Function. The receiving Input Terminal could duplicate this audio

stream into two logical channels, and those could then be reproduced on both speakers. From an interface point of

view, such a setup requires one isochronous endpoint in the AudioStreaming interface to receive the mono audio

data stream, in addition to the mandatory control endpoint and optional interrupt endpoint in the AudioControl

interface.

The same system could be used to play back stereo audio. In this case, the stereo AudioStreaming interface is

selected (Alternate Setting y). This interface also consists of a single isochronous endpoint, now receiving a data

stream that interleaves Front Left and Front Right channel samples. The receiving Input Terminal now splits the

Release 3.0 September 22, 2016 44

stream into a Front Left and Front Right logical channel. The AudioControl interface Alternate Setting remains

unchanged.

If the above AudioStreaming interface were an asynchronous sink, one extra isochronous Feedback endpoint

would also be necessary.

As stated earlier, Audio Functionality is located at the interface level in the device class hierarchy. The following

sections describe the Audio Interface Association, containing a single AudioControl interface and optional

AudioStreaming interfaces, together with their associated endpoints that are used for Audio Function control and

for audio data stream transfer.

3.14.1 AUDIOCONTROL INTERFACE

To control the functional behavior of a particular Audio Function, the Host can manipulate the Clock Entities, Units

and Terminals inside the Audio Function. To make these objects accessible, the Audio Function shall expose a

single AudioControl interface. This interface can contain the following endpoints:

 A control endpoint for manipulating Clock Entity, Unit and Terminal settings and retrieving the state of the

Audio Function. This endpoint is mandatory, and the default endpoint 0 is used for this purpose.

 An interrupt endpoint. The endpoint is optional, but shall be implemented if any of the Controls inside the

device have the need to interrupt the Host to notify the Host of a change in the Audio Function’s behavior.

The AudioControl interface is the single entry point to access the internals of the Audio Function. All requests that

are concerned with the manipulation of certain Audio Controls within the Audio Function’s Clock Entities, Units or

Terminals shall be directed to the AudioControl interface of the Audio Function. Likewise, all descriptors related to

the internals of the Audio Function are part of the class-specific AudioControl interface descriptor.

The AudioControl interface of an Audio Function can only support a single Alternate Setting (Alternate Setting 0).

3.14.1.1 CONTROL ENDPOINT

The audio interface class uses endpoint 0 (the default pipe) as the standard way to control the Audio Function

using class-specific requests. These requests are always directed to one of the Clock Entities, Units, or Terminals

that make up the Audio Function. The format and contents of these requests are detailed further in this document.

3.14.1.2 INTERRUPT ENDPOINT

A USB AudioControl interface can support an optional interrupt endpoint to inform the Host about dynamic

changes that occur on the different addressable Entities (Clock Entities, Terminals, Units, interfaces and endpoints)

inside the Audio Function. The interrupt endpoint is used by the entire Audio Interface Association to convey

change information to the Host. It is considered part of the AudioControl interface because this is the anchor

interface for the Collection.

3.14.2 AUDIOSTREAMING INTERFACE

AudioStreaming interfaces are used to interchange digital audio data streams between the Host and the Audio

Function. They are optional. An Audio Function can have zero or more AudioStreaming interfaces associated with

it, each possibly carrying data of a different nature and format. Each AudioStreaming interface can have at most

one isochronous data endpoint. This construction guarantees a one-to-one relationship between the

AudioStreaming interface and the single audio data stream, related to the endpoint. In some cases, the

isochronous data endpoint is accompanied by an associated isochronous explicit feedback endpoint for

Release 3.0 September 22, 2016 45

synchronization purposes. The isochronous data endpoint and its associated feedback endpoint shall follow the

endpoint numbering scheme as set forth in the USB Specification.

An AudioStreaming interface can have Alternate Settings that can be used to change certain characteristics of the

interface and underlying endpoint. A typical use of Alternate Settings is to provide a way to change the subframe

size and/or number of channels on an active AudioStreaming interface. Whenever an AudioStreaming interface

requires an isochronous data endpoint, it shall at least provide the default Alternate Setting (Alternate Setting 0)

with zero bandwidth requirements (no isochronous data endpoint defined) and an additional Alternate Setting

that contains the actual isochronous data endpoint.

The AudioStreaming interface is essentially used to provide an access point for the Host software (drivers) to

manipulate the behavior of the physical interface it represents. Therefore, even external connections to the Audio

Function (S/PDIF interface, analog input, etc.) can be represented by an AudioStreaming interface so that the Host

software can control certain aspects of those connections. This type of AudioStreaming interface has no associated

USB endpoints. The related audio data stream is not using USB as a transport medium.

For every isochronous OUT or IN endpoint defined in any of the AudioStreaming interfaces, there shall be a

corresponding Input or Output Terminal defined in the Audio Function. For the Host to fully understand the nature

and behavior of the connection, it needs to take into account the interface- and endpoint-related descriptors as

well as the Terminal-related descriptor.

3.14.2.1 ISOCHRONOUS AUDIO DATA STREAM ENDPOINT

In general, the data streams that are handled by an isochronous audio data endpoint do not necessarily map

directly to the logical channels that exist within the Audio Function. As an example, consider the case where

multiple logical audio channels are compressed into a single data stream (AC-3, WMA …). The format of such a

data stream can be entirely different from the native format of the logical channels (for example, 640 Kbits/s AC-3

5.1 audio as opposed to 6 channel 16 bit 44.1 kHz audio). Therefore, to describe the data transfer at the endpoint

level correctly, the notion of logical channel is replaced by the notion of audio data stream. It is the responsibility

of the AudioStreaming interface which contains the OUT endpoint to convert between the audio data stream and

the embedded logical channels before handing the data over to the Input Terminal. In many cases, this conversion

process involves some form of decoding. Likewise, the AudioStreaming interface which contains the IN endpoint

shall convert logical channels from the Output Terminal into an audio data stream, often using some form of

encoding. If the decoding or encoding process exposes Controls that influence the encoding or decoding, these

Controls can be accessed through the AudioStreaming interface.

Requests to control properties that exist within an Audio Function, such as volume or mute cannot be sent to the

endpoint in an AudioStreaming interface. An AudioStreaming interface operates on audio data streams and is

unaware of the number of logical channels it eventually serves. Instead, these requests shall be directed to the

proper Audio Function’s Units or Terminals via the AudioControl interface.

As already mentioned, an AudioStreaming interface can have zero or one isochronous audio data endpoint. If

multiple synchronous audio channels shall be communicated between Host and Audio Function, they shall be

clustered into one physical Cluster by interleaving the individual audio data, and the result can be directed to the

single endpoint.

If an Audio Function needs more than one Cluster to operate, each Cluster is directed to the endpoint of a separate

AudioStreaming interface, belonging to the same Audio Interface Association (all servicing the same Audio

Function).

Release 3.0 September 22, 2016 46

3.14.2.2 ISOCHRONOUS FEEDBACK ENDPOINT

For adaptive audio source endpoints and asynchronous audio sink endpoints, an explicit synchronization

mechanism is needed to maintain synchronization during transfers. For details about synchronization at different

endpoint speeds, see the applicable USB Specification.

3.14.2.3 AUDIO DATA FORMAT

The format used to transport audio data over the USB is entirely determined by the bits set in the bmFormats field

of the class-specific interface descriptor. Some additional fields in this descriptor further describe the format. For

details about the defined Format Types and associated data formats, see the separate document, USB Audio Data

Formats that is considered part of this specification. Vendor-specific protocols shall be fully documented by the

manufacturer.

3.14.3 CLOCK MODEL

Clock Entities provide a way to accurately describe the use and distribution of sampling clock signals throughout

the Audio Function. Sampling frequencies inside the Audio Function can only be influenced by directly interacting

with the Sampling Frequency Control inside a Clock Source Entity. The Sampling Frequency Control RANGE

attributes provide the necessary information for Host software to determine what sampling frequencies the

Control (and thus the associated Clock Domain) supports.

A side effect of changing the sampling frequency could be that certain AudioStreaming interfaces may need to

switch to a different Alternate Setting to support the bandwidth needed for the new sampling frequency. This

specification does not allow an AudioStreaming interface to switch from one Alternate Setting to another on its

own except to change to Alternate Setting zero, which is the idle setting. Instead, when the Audio Function detects

that it can no longer support a certain Alternate Setting on an AudioStreaming interface, it shall switch to Alternate

Setting zero on that interface and report the change to Host software through the Active Alternate Setting Control

interrupt. The Host can then query the interface for new valid Alternate Settings for the interface through the Get

Valid Alternate Settings Control request and make an appropriate selection.

Note: To keep the number of Alternate Settings in an AudioStreaming interface to a minimum, it is not

recommended to provide a separate Alternate Setting for every supported sampling frequency. A few

Active Alternate Settings (low bandwidth, medium bandwidth, high bandwidth) might be enough to

provide reasonable bandwidth control.

Audio streams can be bridged from one clock domain to another through the use of the Sampling Rate Converter

Unit.

3.14.4 POWER DOMAINS MODEL

Managed Power Domain support is optional for an Audio Function. If supported, the Audio Function is subdivided

into one or more Power Domains, identified by their unique Power Domain ID, that can be individually

manipulated by the Host to optimize overall power consumption. If supported, the AudioControl interface contains

an array of Power Domain Controls that allows the Host to set Power Domain States for each individual Power

Domain inside the Audio Function. The Power Domain Control array has as many elements as there are Power

Domains and access to a specific Power Domain Control is based on the Power Domain ID.

A Power Domain shall support three possible Power Domain States D0 to D2. Power Domain State D0 is the fully

operational state and shall be the default Power Domain State for all Power Domains. Power Domain State D1 is a

non-functional state that shall consume less power than Power Domain State D0, but still has the capability to

Release 3.0 September 22, 2016 47

generate wake-up events (interrupts) for the Controls in its Power Domain. Power Domain State D2 shall consume

even less (possibly zero) power than Power Domain State D1, and shall not be able to generate any wake-up

events for the Controls in its Power Domain.

An Audio Function is not allowed to change the Power Domain State of any of its Power Domains autonomously. A

change in Power Domain State shall always be initiated through an explicit request from the Host. Power Domain

States shall be retained across function or device suspend.

Note: Power Domain States operate independently from the function or device suspend state. For example,

bringing all Power Domains in an Audio Function into Power Domain State D2 does not automatically

put the Audio Function into function suspend.

Actual power consumption levels for each Power Domain State are not advertised. The only requirement is that a

higher numbered Power Domain State consume less power than all lower numbered Power Domain States,

potentially at the expense of higher recovery times. Recovery time is defined as the approximate time it takes to

get from the lower Power Domain State D1 or D2 back to the fully operational Power Domain State D0. The Power

Domain descriptor shall indicate the recovery time for the transition from Power Domain State D1 to D0 and from

Power Domain State D2 to D0.

The Audio Function is best placed to manage the details of its resources and their power consumption under

various conditions. These details are therefore not exposed to the Host. Rather, the Host indicates to the Audio

Function which parts of the Audio Function it intends to use at the current time and the Audio Function shall

autonomously decide what resources it can safely bring into a lower power state.

With a few exceptions, the Host expresses to the Audio Function how it will use its building blocks by indicating

which Input and Output Terminals it will actively use to accommodate a certain usage scenario. From that

information, the Audio Function can derive on its own what internal resources (Entities) can be brought into a

lower power state or even shut down completely for that usage scenario. Therefore, there is no need to

exhaustively enumerate membership to a certain Power Domain for all Entities in the Audio Function. It suffices to

indicate Power Domain membership for Input and Output Terminals only. By manipulating a particular Power

Domain’s State, the Host now indicates to the Audio Function whether it wants to use the inputs and/or outputs

associated with that Power Domain in the current usage scenario.

It is possible to have a Power Domain that only includes Entities other than Input and Output Terminals. In this

case, an explicit bypass of these Entities should be implemented in the Audio Function’s topology via a Selector

Unit that resides outside that Power Domain. Setting the Power Domain State of the Power Domain to which such

an Entity belongs to anything other than D0, shall render that Entity non-functional and therefore it shall cease to

produce meaningful output (the output is undefined by this specification in this case). To preserve the integrity of

the signal path, Host software needs to bypass the Entity in question first (by selecting the appropriate input on

the Selector Unit) before switching the Power Domain to a lower Power State.

Entities that can be explicitly bypassed may be the sole member of a Power Domain or may be a member of a

larger membership, provided all non-Terminal members of the membership can be bypassed either individually or

as a group.

3.14.5 ADDITIONAL POWER CONSIDERATIONS AND REQUIREMENTS

An Audio 3.0 compliant bus-powered device shall support LPM/L1 according to the requirements defined in the

USB 2.0 LPM/L1 ECN and LPM Errata. The Audio 3.0 device USB subsystem shall implement and enter low-power

mode during L1. An Audio 3.0 device shall accept LPM/L1 entry requests (i.e. return an ACK) at all times, even if the

device’s isochronous RX endpoint buffer has not yet been emptied or the isochronous TX endpoint already

Release 3.0 September 22, 2016 48

contains samples for the next burst. The Host is responsible for and must be trusted to resume the device in time

to service the next isochronous burst.

The only exception is when the device needs additional uSOFs tokens in order to resynchronize its internal clock

with the USB clock. In such cases the device may deny the request to put the link into an L1 state. It shall do so

only once every 64 ms or longer.

A USB Host that supports LPM/L1 is required to follow the requirements defined in the USB 2.0 LPM/L1 ECN and

LPM Errata. However, for isochronous endpoints the host shall also be required to send at least one uSOF token

before resuming transactions to an endpoint. The USB Host shall be required to request LPM/L1 entry after

servicing the device in each service interval. The USB host is additionally required to implement low power state

and save power during L1.

3.14.6 BINDING BETWEEN PHYSICAL BUTTONS AND AUDIO CONTROLS

Most devices that contain an Audio Function will also have one or more front panel buttons that are intended to

control certain aspects of the Audio Function inside the device. The most obvious example is a Volume Control

button on the front of a multimedia speaker. Since an Audio Function can potentially contain many Audio Controls

of the same type, there is a need to bind a physical control (button, knob, slider, jog, …) to a particular Audio

Control inside the Audio Function.

This specification provides two mutually exclusive methods to provide this binding:

 The physical button is implemented as a HID Control

 The physical button is an integral part of the Audio Control

It is prohibited to implement both methods for the same physical button. However, it is allowed to use the first

method for some of the front panel buttons and the second method for the remaining front panel buttons. It is

strongly discouraged to implement front panel buttons that use neither of the above mentioned methods, i.e.

buttons that are invisible to Host software and have a local effect only.

3.14.6.1 PHYSICAL BUTTON IS A HID CONTROL

In this case, the physical button is completely separate from the Audio Function and is implemented within the

device’s HID interface. The Audio Function is not even aware of the button’s existence. Any change of state for the

button is communicated to Host software via HID reports. It is then up to Host software to interpret the button

state change and derive from there the appropriate action to be taken toward the Audio Function. Therefore, the

binding responsibility resides entirely within the application or Operating System software. Although this method

provides extensive flexibility, it also puts the burden of providing the correct binding on the software, making it

sometimes hard to create generic application or OS software that generates the proper (manufacturer intended)

binding.

3.14.6.2 PHYSICAL BUTTON IS INTEGRAL PART OF THE AUDIO CONTROL

In this case, the physical button directly interacts with the actual Audio Control. Button state changes are not

reported to Host software. Instead, the change of state of the Audio Control resulting from the button

manipulation is reported to Host software through the Audio Control interrupt mechanism. As a consequence, the

binding between the physical button and the Audio Control is very direct and entirely dictated by the design of the

device. Although less flexible, this method provides a very clear and straightforward way to perform the binding.

Release 3.0 September 22, 2016 49

4 DESCRIPTORS

The following sections describe the standard and class-specific USB descriptors for the Audio Interface Class.

4.1 STANDARD DESCRIPTORS

Because Audio Functionality is always considered to reside at the interface level, all relevant fields in the standard

descriptors shall indicate that class information is to be found at the interface level so that enumeration software

looks down at the interface level to determine the Interface Class and to also ensure that IAD-aware enumeration

software gets loaded.

Because any Device compliant with this specification is required to contain multiple Configuration descriptors, it is

also required that any such device include a Configuration Summary Descriptor as part of the standard BOS

descriptor. These Configuration Summary descriptors may be used by Host software to decide which Configuration

to use to obtain the desired functionality, not just for any Audio Function, but also for any other function available

in the Configuration. The Audio Function portion of the Configuration Summary descriptor shall contain the

bFunctionClass, bFunctionSubClass, and bFunctionProtocol fields of each AIA contained in the Configuration being

summarized. As mentioned previously in Section 3.3, “Backwards Compatibility”, the same AIA may need to be

included in multiple Configuration descriptors if the USB Device contains other USB Class Functions with differing

versions.

Refer to the BOS Configuration Summary ECR/ECN for more details.

Also note that because Devices that are compliant with this specification are required to contain a BOS descriptor,

the minimum bDeviceProtocol value in the Standard USB Device descriptor shall be 0x0201.

The standard Interface Association mechanism is used to describe an Audio Interface Association (AIA). All

interfaces belonging to the same AIA shall be identified by means of the standard Interface Association descriptor

(IAD).

Each AIA shall consist of the mandatory AudioControl interface that shall be the first in the AIA (having the lowest

interface number). All AudioStreaming interfaces shall be contiguously numbered and immediately follow the

AudioControl interface in the AIA. All MIDIStreaming interfaces shall be contiguously numbered and immediately

follow the AudioStreaming interfaces in the AIA.

Note: For more information on Interface Association, refer to USB Interface Association Descriptor Device

Class Code and Use Model White Paper, available on the USB web site.

4.2 CLASS-SPECIFIC DESCRIPTORS

This specification allows for two different methods to express class-specific descriptors. The first method follows

the traditional layout for USB descriptors whereas the second method introduces a new way for expressing and

retrieving class-specific descriptors. These descriptors are called High Capability descriptors. For each class-specific

descriptor, implementations shall use the method as indicated in this specification. High Capability descriptors are

used in the following cases:

 The descriptor length exceeds the 256-byte limit imposed by traditional descriptors

 The descriptor is dynamic in nature as per this specification, i.e. it may change after enumeration (High

Capability descriptors have the ability to report changes).

Release 3.0 September 22, 2016 50

High Capability descriptors are never part of the configuration descriptor hierarchy, returned by the Get

Configuration request. Only traditional layout descriptors can be included in this hierarchy. A High Capability

descriptor shall always be referenced by a traditional class-specific descriptor that includes the High Capability

descriptor’s unique ID as one of its fields.

4.2.1 TRADITIONAL CLASS-SPECIFIC DESCRIPTORS

Traditional class-specific descriptors as defined in this specification all follow a common layout. The first three

fields of any traditional class-specific descriptor are common to all traditional descriptors and are followed by a

layout that is specific to the type and subtype of the descriptor.

The bLength field contains the total length of the descriptor, in bytes.

The bDescriptorType field in part follows the bit allocation scheme of the bmRequestType field identifies the

descriptor as being a class-specific descriptor. Bit D7 of this field is reserved. Bits D6..5 are used to indicate that

this is a class-specific descriptor (D6..5 = 0b01). Bits D4..0 are used to encode the descriptor type.

The bDescriptorSubtype field further qualifies the exact nature of the descriptor.

Table 4-1: Traditional Class-Specific Descriptor Layout

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 3+n.

1 bDescriptorType 1 0b001xxxxx Descriptor type.

2 bDescriptorSubtype 1 Constant Descriptor subtype.

3 --- n --- Descriptor type- and subtype-specific
descriptor layout.

4.2.1.1 COMMON FIELDS IN SOME CLASS-SPECIFIC DESCRIPTORS

Some fields appear in more than one class-specific descriptor. Instead of repeating the description of that field for

all descriptor instances, the description is indicated once in this Section and applies to all descriptor instances in

which the field appears.

4.2.1.1.1 BMCONTROLS FIELD

The bmControls field contains a set of bit pairs, indicating which Controls are present in the Entity and what their

capabilities are. If a certain Control is not present, then the bit pair shall be set to 0b00. If a Control is present but

Read-Only, the bit pair shall be set to 0b01. If a Control is also Host programmable, the bit pair shall be set to 0b11

(Read/Write). The value 0b10 is not allowed.

4.2.2 HIGH CAPABILITY CLASS-SPECIFIC DESCRIPTORS

This specification defines a new type of class-specific descriptors, called High Capability descriptors. A High

Capability descriptor is not retrieved from the Audio Function during enumeration time. Rather, it can only be

retrieved using the Get High Capability Descriptor request as defined in Section 5.2.3.3, “High Capability Descriptor

Request”.

A High Capability descriptor is always referenced by another descriptor via its unique ID.

Release 3.0 September 22, 2016 51

A High Capability class-specific descriptor can be up to 64K bytes in length. Also, it can generate an interrupt of

source type HIGH_CAPABILITY_DESCRIPTOR whenever the Audio Function changes the descriptor during normal

operation (dynamic descriptor).

High Capability descriptors all follow a common layout, very similar to the traditional class-specific descriptors. The

first three fields of any High Capability descriptor are common to all High Capability descriptors and are followed

by a layout that is specific to the type and subtype of the descriptor.

The wLength field contains the total length of the descriptor, in bytes. Descriptor lengths up to a maximum of 64K

bytes are supported.

The bDescriptorType field in part follows the bit allocation scheme of the bmRequestType field identifies the

descriptor as being a class-specific descriptor. Bit D7 of this field is reserved. Bits D6..5 are used to indicate that

this is a class-specific descriptor (D6..5 = 0b01). Bits D4..0 are used to encode the descriptor type.

The bDescriptorSubtype field further qualifies the exact nature of the descriptor. bDescriptorSubtype field bits

D6..0 are used to encode the descriptor subtype.

The wDescriptorID field contains a value that uniquely identifies the High Capability descriptor within an interface

or endpoint.

Table 4-2: High Capability Class-Specific Descriptor Layout

Offset Field Size Value Description

0 wLength 2 Number Size of this descriptor, in bytes: 6+n.

2 bDescriptorType 1 0b001xxxxx Descriptor type.

3 bDescriptorSubtype 1 Constant Descriptor subtype.

4 wDescriptorID 2 Number Unique ID for this High Capability class-
specific descriptor.

6 --- n --- Descriptor type- and subtype-specific
descriptor layout.

4.3 CLUSTER DESCRIPTOR

A Cluster is a grouping of audio channels that share the same characteristics like sampling frequency, bit

resolution, etc. To characterize a Cluster, a Cluster descriptor is introduced.

This specification introduces a Cluster descriptor that is significantly different from earlier Cluster descriptor

definitions. The goal is to be much more flexible and extensible and at the same time describe the Cluster more

accurately and with richer content.

The Cluster descriptor always uses the High Capability representation. At the highest level, it is structured as

follows:

Release 3.0 September 22, 2016 52

Figure 4-1: Cluster Descriptor

The descriptor consists of a fixed Header, followed by an optional Common Block, followed by as many Channel

Blocks as there are channels in the Cluster.

4.3.1 CLUSTER DESCRIPTOR HEADER

The Header starts with the wLength field that contains the total number of bytes in the entire descriptor.

The wDescriptorID field contains an ID number that uniquely identifies the descriptor within the Audio Function.

The value zero is reserved and shall not be used as a valid Cluster descriptor ID.

The bNrChannels field indicates the number of audio channels present in the Cluster.

Table 4-3: Cluster Descriptor Header

Offset Field Size Value Description

0 wLength 2 Number Total length of the Cluster descriptor, in
bytes.

2 bDescriptorType 1 Constant CS_CLUSTER descriptor type.

3 bDescriptorSubtype 1 Constant SUBTYPE_UNDEFINED descriptor subtype.

4 wDescriptorID 2 Number Unique ID of this Cluster descriptor.

6 bNrChannels 1 Number Number of channels present in the Cluster:
n.

Release 3.0 September 22, 2016 53

4.3.2 CLUSTER DESCRIPTOR BLOCK

The Cluster descriptor Header is followed by a number of Cluster descriptor Blocks. There is an optional Common

Block, followed by as many Channel Blocks as there are channels in the Cluster. Each Block consists of a number of

Segments.

The Common Block consists of Segments that contain relevant information about characteristics of the Cluster as a

whole.

A Channel Block consists of Segments that contain relevant information about that channel’s characteristics. At a

minimum, each Channel Block shall contain either an Information Segment or an Ambisonic Segment and a single

End Segment. All other Segments are optional. It is highly recommended that the same layout is used for each

Channel Block, i.e. the same Segments appear in the same order in each Channel Block.

However, if for any reason, there is currently no Cluster information available, then the Cluster descriptor shall

only contain a Header with the bNrChannels field set to zero. This is called the Empty Cluster descriptor.

Figure 4-2 further illustrates the above concepts.

Figure 4-2: Cluster Descriptor Block

4.3.2.1 SEGMENTS

There are two types of Segments. Common Block Segments contain pertinent information about the Cluster as a

whole. Channel Block Segments contain pertinent information about certain aspects of a particular channel. Both

Segment types share the same layout.

The bSegmentType field describes the Segment Type (Common Block or Channel Block) and also the type of

content contained in the Segment.

The layout for a Segment is always as follows:

Table 4-4: Cluster Descriptor Segment

Offset Field Size Value Description

0 wLength 2 Number Length of the Segment, in bytes: 3+n.

2 bSegmentType 1 Constant Describes the Segment Type and the type of
content in the Segment.

Release 3.0 September 22, 2016 54

Offset Field Size Value Description

3 Segment-specific n Segment-specific content.

4.3.2.1.1 END SEGMENT

Each Block is terminated by an End Segment. The End Segment marks the end of the variable length Block. The End

Segment does not have a Segment-specific section and is structured as follows:

Table 4-5: End Segment

Offset Field Size Value Description

0 wLength 2 Number Length of the End Segment, in bytes: 3.

2 bSegmentType 1 Constant END_SEGMENT.

4.3.2.1.2 COMMON BLOCK SEGMENTS

The following Common Block Segment types are defined:

 Cluster Description

 Vendor-specific

Values for the Common Block Segment types can be found in Appendix A.10, “Cluster Descriptor Segment types.”

4.3.2.1.2.1 CLUSTER DESCRIPTION SEGMENT

The Cluster Description Segment contains the ID of a String descriptor in the wCDDescrStr field that provides more

information about the Cluster.

Table 4-6: Cluster Description Segment

Offset Field Size Value Description

0 wLength 2 Number Length of the Segment, in bytes: 5.

2 bSegmentType 1 Constant CLUSTER_DESCRIPTION.

3 wCDDescrStr 2 wStrDescrID ID of a String descriptor that further
describes the Cluster.

4.3.2.1.2.2 VENDOR-DEFINED SEGMENT

Vendors are allowed to add vendor-defined Segments to the Common Block to convey additional, proprietary

Cluster information. The vendor-defined Segment shall use the following layout:

Table 4-7: Vendor-defined Segment

Offset Field Size Value Description

0 wLength 2 Number Length of the End Segment, in bytes: 3+n.

2 bSegmentType 1 Constant CLUSTER_VENDOR_DEFINED.

3 Vendor-defined n N/A Vendor-defined extension of the Segment.

Release 3.0 September 22, 2016 55

4.3.2.1.3 CHANNEL BLOCK SEGMENTS

The following Channel Block Segment types are defined:

 Information

 Ambisonic

 Channel Description

 Vendor-specific

Values for the Channel Block Segment types can be found in Appendix A.10, “Cluster Descriptor Segment types.”

4.3.2.1.3.1 INFORMATION SEGMENT

The Information Segment contains relevant information for a particular channel in the Cluster. It is mutually

exclusive with the Ambisonic Segment for that same channel.

The bChPurpose field indicates the purpose of the channel. Currently defined purposes for a channel are:

 Generic Audio: contains audio primarily used for direct capture or reproduction.

 Voice: intended to be interpreted by humans.

 Speech: intended to be interpreted or generated by machine.

 Ambient: contains audio other than the primary channels.

 Reference: contains final processed audio. For example, a reference for AEC processing.

 Ultrasonic: contains signals with spectral content above audible limits (typically >20 kHz).

 Vibrokinetic: contains very low frequency information, typically used to actuate vibrators or motion

actuators.

 Non-Audio: indicates that the channel carries non-audio information. Examples of non-audio information

are real-time pressure sensing data or amplifier gain feedback data, etc.

The values for the purposes listed above can be found in Appendix A.11, “Channel Purpose Definitions.”

 Note that great care should be taken when indicating purposes for an audio channel. Only when the channel has

been specifically tailored to serve a purpose should the appropriate bit(s) be set. For example, if raw audio is

processed specifically to be used by applications that use human voice as input, such a channel may be marked

Voice.

The wChRelationship field describes the relationship of this channel with respect to the other channels in the

Cluster. Currently defined relationships for a channel are described in the table below.

Table 4-8: Channel Relationships

 Channel Relationship Acronym Description

G
en

e
ri

c

RELATIONSHIP_UNDEFINED UND Relationship undefined or unknown

MONO M A mono channel

LEFT L A generic Left channel

RIGHT R A generic Right channel

ARRAY AR A channel that is part of an array configuration

Release 3.0 September 22, 2016 56

 Channel Relationship Acronym Description
In

p
u

t-
R

el
at

ed

PATTERN_X PX The X channel of an X/Y microphone

PATTERN_Y PY The Y channel of an X/Y microphone

PATTERN_A PA The A channel of an A/B microphone

PATTERN_B PB The B channel of an A/B microphone

PATTERN_M PM The M channel of an M/S microphone

PATTERN_S PS The S channel of an M/S microphone

O
u

tp
u

t-
R

el
at

ed

Front Left FL Refer to Figure 4-3

Front Right FR Refer to Figure 4-3

Front Center FC Refer to Figure 4-3

Front Left of Center FLC Refer to Figure 4-3

Front Right of Center FRC Refer to Figure 4-3

Front Wide Left FWL Refer to Figure 4-3

Front Wide Right FWR Refer to Figure 4-3

Side Left SL Refer to Figure 4-3

Side Right SR Refer to Figure 4-3

Surround Array Left SAL Refer to Figure 4-3

Surround Array Right SAR Refer to Figure 4-3

Back Left BL Refer to Figure 4-3

Back Right BR Refer to Figure 4-3

Back Center BC Refer to Figure 4-3

Back Left of Center BLC Refer to Figure 4-3

Back Right of Center BRC Refer to Figure 4-3

Back Wide Left BWL Refer to Figure 4-3

Back Wide Right BWR Refer to Figure 4-3

Top Center TC Refer to Figure 4-3

Top Front Left TFL Refer to Figure 4-3

Top Front Right TFR Refer to Figure 4-3

Top Front Center TFC Refer to Figure 4-3

Top Front Left of Center TFLC Refer to Figure 4-3

Top Front Right of Center TFRC Refer to Figure 4-3

Top Front Wide Left TFWL Refer to Figure 4-3

Top Front Wide Right TFWR Refer to Figure 4-3

Top Side Left TSL Refer to Figure 4-3

Top Side Right TSR Refer to Figure 4-3

Top Surround Array Left TSAL Refer to Figure 4-3

Release 3.0 September 22, 2016 57

 Channel Relationship Acronym Description

Top Surround Array Right TSAR Refer to Figure 4-3

Top Back Left TBL Refer to Figure 4-3

Top Back Right TBR Refer to Figure 4-3

Top Back Center TBC Refer to Figure 4-3

Top Back Left Of Center TBLC Refer to Figure 4-3

Top Back Right Of Center TBRC Refer to Figure 4-3

Top Back Wide Left TBWL Refer to Figure 4-3

Top Back Wide Right TBWR Refer to Figure 4-3

Bottom Center BC Refer to Figure 4-3

Bottom Front Left BFL Refer to Figure 4-3

Bottom Front Right BFR Refer to Figure 4-3

Bottom Front Center BFC Refer to Figure 4-3

Bottom Front Left Of Center BFLC Refer to Figure 4-3

Bottom Front Right Of Center BFRC Refer to Figure 4-3

Bottom Front Wide Left BFWL Refer to Figure 4-3

Bottom Front Wide Right BFWR Refer to Figure 4-3

Bottom Side Left BSL Refer to Figure 4-3

Bottom Side Right BSR Refer to Figure 4-3

Bottom Surround Array Left BSAL Refer to Figure 4-3

Bottom Surround Array Right BSAR Refer to Figure 4-3

Bottom Back Left BBL Refer to Figure 4-3

Bottom Back Right BBR Refer to Figure 4-3

Bottom Back Center BBC Refer to Figure 4-3

Bottom Back Left Of Center BBLC Refer to Figure 4-3

Bottom Back Right Of Center BBRC Refer to Figure 4-3

Bottom Back Wide Left BBWL Refer to Figure 4-3

Bottom Back Wide Right BBWR Refer to Figure 4-3

Low Frequency Effects LFE Refer to Figure 4-3

Low Frequency Effects Left LFEL Refer to Figure 4-3

Low Frequency Effects Right LFER Refer to Figure 4-3

Headphone Left HPL Refer to Figure 4-3

Headphone Right HPR Refer to Figure 4-3

Release 3.0 September 22, 2016 58

Figure 4-3: 3D Representation of the Channel Relationships

Constant names, acronyms, and their associated values are listed in Appendix A.12, “Channel Relationship

Definitions.”

The bChGroupID field is used to create a link among a subset of channels in the Cluster by specifying the same

value in the bChGroupID field for those channels. This field is useful when multiple sets of related channels are

present in the same Cluster. For example, a single Cluster may carry a Group of 5.1 channels and another Group of

microphone channels. The 5.1 channels would share the same Group ID value, indicating that they belong to a

(5.1) Group, and the microphone channels would share another Group ID value, indicating they belong to a

different (microphone) Group. The scope of the bChGroupID field is limited to the Cluster to which the channels

belong. Note that specifying a value of 0 in this field for all channels in the Cluster effectively creates a Group with

ID=0 to which all channels belong.

Release 3.0 September 22, 2016 59

Table 4-9: Information Segment

Offset Field Size Value Description

0 wLength 2 Number Length of the Channel Information Segment,
in bytes: 6.

2 bSegmentType 1 Constant CHANNEL_INFORMATION.

3 bChPurpose 1 Number Intended purpose of the channel.

4 bChRelationship 1 Number Describes the relationship of this channel
with the other channels. Refer to Appendix
A.12, “Channel Relationship Definitions.”

5 bChGroupID 1 Number ID used to group channels together.

4.3.2.1.3.2 AMBISONIC SEGMENT

The Ambisonic Segment contains relevant information for a particular Ambisonic channel in the Cluster. It is

mutually exclusive with the Information Segment for that same channel.

The bCompOrdering field indicates the convention used for ordering of the spherical harmonics. See Appendix

A.13, “Ambisonic Component Ordering Convention Types” for the supported component ordering conventions. All

channels in a Group (see below) shall indicate the same component ordering convention.

The bACN field contains the Ambisonic Channel Number.

The bAmbNorm field indicates the type of normalization used for the channel. See Appendix A.14, “Ambisonic

Normalization Types” for the supported normalization types. All channels in a Group (see below) shall indicate the

same normalization type.

The bChGroupID field is used to create a link among a subset of channels in the Cluster by specifying the same

value in the bChGroupID field for those channels. This field is useful when multiple sets of related channels are

present in the same Cluster. For example, a single Cluster may carry a Group of 5.1 channels and another Group of

microphone channels. The 5.1 channels would share the same Group ID value, indicating that they belong to a

(5.1) Group, and the microphone channels would share another Group ID value, indicating they belong to a

different (microphone) Group. The scope of the bChGroupID field is limited to the Cluster to which the channels

belong. Note that specifying a value of 0 in this field for all channels in the Cluster effectively creates a Group with

ID=0 to which all channels belong.

Table 4-10: Ambisonic Segment

Offset Field Size Value Description

0 wLength 2 Number Length of the Ambisonic Channel
Information Segment, in bytes: 7.

2 bSegmentType 1 Constant CHANNEL_AMBISONIC.

3 bCompOrdering 1 Number The Component Ordering convention for the
Ambisonic Spherical Harmonics. Refer to
Appendix A.13, “Ambisonic Component
Ordering Convention Types.”

4 bACN 1 Number Ambisonic Channel Number.

5 bAmbNorm 1 Number Applied channel normalization.

Refer to Appendix A.14, “Ambisonic
Normalization Types.”

Release 3.0 September 22, 2016 60

Offset Field Size Value Description

6 bChGroupID 1 Number ID used to group channels together.

4.3.2.1.3.3 CHANNEL DESCRIPTION SEGMENT

The Channel Description Segment contains the ID of a String descriptor in the wChDescrStr field that provides

more information about the channel.

Table 4-11: Channel Description Segment

Offset Field Size Value Description

0 wLength 2 Number Length of the Segment, in bytes: 5.

2 bSegmentType 1 Constant CHANNEL_DESCRIPTION.

3 wChDescrStr 2 wStrDescrID ID of a String descriptor that further
describes the channel.

4.3.2.1.3.4 VENDOR-DEFINED SEGMENT

Vendors are allowed to add vendor-defined Segments to the Channel Block to convey additional, proprietary

channel information. The vendor-defined Segment shall use the following layout:

Table 4-12: Vendor-defined Segment

Offset Field Size Value Description

0 wLength 2 Number Length of the End Segment, in bytes: 3+n.

2 bSegmentType 1 Constant CHANNEL_VENDOR_DEFINED.

3 Vendor-defined n N/A Vendor-defined extension of the Segment.

4.3.3 EXAMPLE CLUSTER DESCRIPTOR

A Cluster that carries 5.1 discrete channels may have the following Cluster descriptor:

Table 4-13: Cluster Descriptor Example

 Offset Field Size Value Description

H
ea

d
er

0 wLength 2 0x3E Total length of the Cluster descriptor, in
bytes: 62.

2 bDescriptorType 1 0x26 CS_CLUSTER descriptor type.

3 bDescriptorSubtype 1 0x00 SUBTYPE_UNDEFINED descriptor subtype.

4 wDescriptorID 2 Implementation-
dependent

Unique ID of this Cluster descriptor.

6 bNrChannels 1 6 Number of channels present in the Cluster.

In
fo

rm
at

io
n

 S
eg

m
e

n
t 8 wLength 2 0x06 Length of the Information Segment, in bytes.

10 bSegmentType 1 0x20 CHANNEL_INFORMATION.

11 bChPurpose 1 0x00 Generic Audio.

12 bChRelationship 1 0x80 Front Left.

13 bChGroupID 1 0x01 ID used to group channels together.

Release 3.0 September 22, 2016 61

 Offset Field Size Value Description
En

d
 14 wLength 2 0x03 Length of the End Segment, in bytes.

16 bSegmentType 1 0xFF END_SEGMENT.

In
fo

rm
at

io
n

17 wLength 2 0x06 Length of the Information Segment, in bytes.

19 bSegmentType 1 0x20 CHANNEL_INFORMATION.

20 bChPurpose 1 0x00 Generic Audio.

21 bChRelationship 1 0x81 Front Right.

22 bChGroupID 1 0x01 ID used to group channels together.

En
d

 23 wLength 2 0x03 Length of the End Segment, in bytes.

25 bSegmentType 1 0xFF END_SEGMENT.

In
fo

rm
at

io
n

26 wLength 2 0x06 Length of the Information Segment.

28 bSegmentType 1 0x20 CHANNEL_INFORMATION.

29 bChPurpose 1 0x00 Generic Audio.

30 bChRelationship 1 0x82 Front Center.

31 bChGroupID 1 0x01 ID used to group channels together.

En
d

 32 wLength 2 0x03 Length of the End Segment, in bytes.

34 bSegmentType 1 0xFF END_SEGMENT.

In
fo

rm
at

io
n

35 wLength 2 0x06 Length of the Information Segment.

37 bSegmentType 1 0x20 CHANNEL_INFORMATION.

38 bChPurpose 1 0x00 Generic Audio.

39 bChRelationship 1 0x89 Surround Array Left.

40 bChGroupID 1 0x01 ID used to group channels together.

En
d

 41 wLength 2 0x03 Length of the End Segment.

43 bSegmentType 1 0xFF END_SEGMENT.

In
fo

rm
at

io
n

44 wLength 2 0x06 Length of the Information Segment.

46 bSegmentType 1 0x20 CHANNEL_INFORMATION.

47 bChPurpose 1 0x00 Generic Audio.

48 bChRelationship 1 0x8A Surround Array Right.

49 bChGroupID 1 0x01 ID used to group channels together.

En
d

 50 wLength 2 0x03 Length of the End Segment.

52 bSegmentType 1 0xFF END_SEGMENT.

In
fo

rm
at

io
n

53 wLength 2 0x06 Length of the Information Segment.

55 bSegmentType 1 0x20 CHANNEL_INFORMATION.

56 bChPurpose 1 0x00 Generic Audio.

57 bChRelationship 1 0xB8 Low Frequency Effects.

58 bChGroupID 1 0x01 ID used to group channels together.

Release 3.0 September 22, 2016 62

 Offset Field Size Value Description
En

d
 59 wLength 2 0x03 Length of the End Segment.

61 bSegmentType 1 0xFF END_SEGMENT.

4.3.4 CEA-861.2 CHANNEL MAPPING

The Advanced Audio Extensions specification CEA-861.2 allocates speaker spatial locations in a different order than

what is defined in this USB Audio Definition. Also, there are channel relationships defined that do not appear in the

USB Audio Definition. To provide consistency in implementations that use both the CEA-861.2 allocations and the

USB Audio channel relationships, a mapping scheme between the two is included here to which such

implementations shall adhere.

The mapping between the USB-defined channel relationships and the CEA speaker allocations is included in the

table in Appendix A.12, “Channel Relationship Definitions.”

4.4 PHYSICAL VERSUS LOGICAL CLUSTER

This specification makes a distinction between a logical and physical Cluster. Hence, there are also two types of

Cluster descriptors defined:

 Logical Cluster descriptor

 Physical Cluster descriptor

The layout of these descriptors is identical and shall always use the High Capability representation as described in

Section 4.2.2, “High Capability Class-Specific Descriptors.” Both the logical and physical Cluster descriptors are not

independent descriptors as such. They are always referenced by other descriptors. The referencing descriptors

always include a wClusterDescrID field that contains the unique ID of the Cluster descriptor they reference.

The logical Cluster descriptor is referenced by one of the following descriptors:

 Input Terminal descriptor

 Mixer Unit descriptor

 Processing Unit descriptor

 Extension Unit descriptor

The physical Cluster descriptor is referenced by the class-specific AudioStreaming interface descriptor in each

Alternate Setting of an AudioStreaming interface (except for Alternate Setting 0).

The physical Cluster descriptor is also referenced by the Connectors descriptor to provide information about the

physical channels that travel over the various connectors, associated with a Terminal.

4.4.1 MAPPING BETWEEN PHYSICAL AND LOGICAL CLUSTERS

Audio streams always enter or leave the Audio Function via an AudioStreaming – Terminal pair. The following

sections describe in more detail the possible cases and the internal operations that take place.

4.4.1.1 AUDIOSTREAMING OUT INTERFACE – INPUT TERMINAL

For Type I Audio streams, the physical Cluster descriptor referenced by the class-specific AudioStreaming interface

descriptor of the active Alternate Setting of that interface describes the audio channels as they enter the interface.

Release 3.0 September 22, 2016 63

For Type III/IV Audio streams, the physical Cluster describes the audio channels after they have been decoded into

discrete audio channels.

The audio samples (Audio Subslots) shall be ordered in the exact same order as they are listed in the physical

Cluster descriptor. The Cluster then enters an implicit Up/Down-mix process to produce an output Cluster as

described by the Cluster descriptor that is referenced by the associated Input Terminal descriptor.

Finally, that Cluster then enters the Audio Function via the Output Pin of the Input Terminal.

This construct allows for a complete decoupling between the physical Cluster configuration as selected by the

active Alternate Setting of the interface, and the logical Cluster configuration as described by the Input Terminal’s

Cluster descriptor. In other words, the logical Cluster configuration is independent of the chosen Alternate Setting

of the AudioStreaming interface.

The process used to perform the Up/Down-mix operation is implementation-specific and not specified here.

Figure 4-4 illustrates the concept for AudioStreaming OUT interfaces.

Figure 4-4: Physical to Logical Cluster Mapping

4.4.1.2 AUDIOSTREAMING IN INTERFACE – OUTPUT TERMINAL

For Type I Audio streams, the physical Cluster descriptor referenced by the class-specific AudioStreaming interface

descriptor of the active Alternate Setting of that AudioStreaming OUT interface describes the audio channels as

they enter the interface.

For Type III/IV Audio streams, the physical Cluster describes the audio channels after they have been decoded into

discrete audio channels.

Release 3.0 September 22, 2016 64

An upstream Cluster descriptor describes the logical Cluster entering the Input Pin of the Output Terminal.

The Cluster then enters an implicit Up/Down-mix process to produce an output Cluster as described by the

physical Cluster descriptor referenced by the class-specific AudioStreaming interface descriptor of the active

Alternate Setting of the interface. The audio samples (Audio Subslots) shall be ordered in the exact same order as

they are listed in the physical Cluster descriptor.

For Type I Audio streams, that Cluster then leaves the AudioStreaming interface.

For Type III/IV Audio streams, the Cluster is encoded before leaving the AudioStreaming interface.

This construct allows for a complete decoupling between the logical Cluster configuration as described by the

upstream Cluster descriptor and the physical Cluster configuration as selected by the active Alternate Setting of

the interface. In other words, the physical Cluster configuration is independent of the upstream Cluster

configuration and solely determined by the chosen Alternate Setting of the AudioStreaming interface.

The process used to perform the Up/Down-mix operation is implementation-specific and not specified here.

Figure 4-4 illustrates the concept for AudioStreaming IN interfaces.

Figure 4-5: Logical to Physical Cluster Mapping

4.5 AUDIOCONTROL INTERFACE DESCRIPTORS

The AudioControl (AC) interface descriptors contain all relevant information to fully characterize the corresponding

Audio Function. The standard interface descriptor characterizes the interface itself, whereas the class-specific

interface descriptor provides pertinent information concerning the internals of the Audio Function. It specifies

revision level information and lists the capabilities of each Unit and Terminal.

Release 3.0 September 22, 2016 65

4.5.1 STANDARD AC INTERFACE DESCRIPTOR

The standard AC interface descriptor is identical to the standard interface descriptor defined in the USB

Specification, except that some fields have now dedicated values.

Table 4-14: Standard AC Interface Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 9.

1 bDescriptorType 1 Constant INTERFACE descriptor type.

2 bInterfaceNumber 1 Number Number of interface. A zero-based value
identifying the index in the array of
concurrent interfaces supported by this
configuration.

3 bAlternateSetting 1 Number Value used to select an Alternate Setting for
the interface identified in the prior field.
Shall be set to 0.

4 bNumEndpoints 1 Number Number of endpoints used by this interface
(excluding endpoint 0). This number is either
0 or 1 if the optional interrupt endpoint is
present.

5 bInterfaceClass 1 Class AUDIO. Audio Interface Class code (assigned
by the USB). See Appendix A.4, “Audio
Interface Class Code.”

6 bInterfaceSubClass 1 Subclass AUDIOCONTROL. Audio Interface Subclass
code. Assigned by this specification. See
Appendix A.5, “Audio Interface Subclass
Codes.”

7 bInterfaceProtocol 1 Protocol IP_VERSION_03_00 Interface Protocol code.
Indicates the current version of the
specification. See Appendix A.6, “Audio
Interface Protocol Codes”

8 iInterface 1 Index Index of a String descriptor that describes
this interface.

4.5.2 CLASS-SPECIFIC AC INTERFACE DESCRIPTOR

The class-specific AC interface descriptor is a concatenation of all the descriptors that are used to fully describe the

Audio Function, i.e. all Clock descriptors (CDs), all Unit descriptors (UDs), all Terminal descriptors (TDs), and all

Power Domain descriptors (PDD).

The total length of the class-specific AC interface descriptor depends on the number of Clock Entities, Units,

Terminals, and Power Domains in the Audio Function. Therefore, the descriptor starts with a header that reflects

the total length in bytes of the entire class-specific AC interface descriptor in the wTotalLength field. The

bCategory field contains a constant that indicates what the primary use of this Audio Function is as intended by

the manufacturer.

The order in which the Clock Entity, Unit, Terminal, and Power Domain descriptors are reported is not important

because every descriptor can be identified through its bDescriptorType and bDescriptorSubtype field.

The following table defines the class-specific AC interface header descriptor.

Release 3.0 September 22, 2016 66

Table 4-15: Class-Specific AC Interface Header Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 10.

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant HEADER descriptor subtype.

3 bCategory 1 Constant Constant, indicating the primary use of this
Audio Function, as intended by the
manufacturer. See Appendix A.7, “Audio
Function Category Codes.”

4 wTotalLength 2 Number Total number of bytes returned for the class-
specific AudioControl interface descriptor.
Includes the combined length of this
descriptor header and all Clock Source, Unit,
Terminal, and Power Domain descriptors.

6 bmControls 4 Bitmap D1..0: Latency Control.

D31..2: Reserved.

The Clock Entity descriptors, Unit descriptors, Terminal descriptors, and Power Domain descriptors appear next, in

any order. The layout of the Entity descriptors depends on the type of Clock Entity, Unit, or Terminal they

represent. The Power Domain descriptor has a fixed layout. There are three types of Clock Entity descriptors, seven

types of Unit descriptors, two types of Terminal descriptors, and a single type of Power Domain descriptor. The

Entity descriptors are summarized in the following sections.

The first three fields are common for all descriptors. They contain the Descriptor Length, Descriptor Type, and

Descriptor Subtype. Entity descriptors have an additional common field that contains the Clock Entity ID, Unit ID,

Terminal ID, or Power Domain ID for the Entity.

Each Entity (Clock, Unit, Terminal, and Power Domain) within the Audio Function is assigned a unique identification

number, the Clock Entity ID (CID), Unit ID (UID), Terminal ID (TID), or Power Domain ID (PID), contained in the

bClockID, bUnitID, bTerminalID, bPowerDomainID field of the descriptor. The value 0x00 is reserved for

undefined ID, effectively restricting the total number of addressable Entities in the Audio Function (Clock Entities,

Units, Terminals, and Power Domains) to 255.

Besides uniquely identifying all addressable Entities in an Audio Function, the IDs (except for the Power Domain ID)

also serve to describe the topology of the Audio Function; i.e. the bSourceID field of a Unit or Terminal descriptor

indicates to which other Unit or Terminal this Unit or Terminal is connected. Likewise, the bCSourceID field in a

Terminal descriptor indicates to which Clock Entity this Terminal is connected. Furthermore, the Entity IDs are also

used to indicate to which Power Domain each Entity belongs.

4.5.2.1 INPUT TERMINAL DESCRIPTOR

The Input Terminal descriptor (ITD) provides information to the Host that is related to the functional aspects of the

Input Terminal.

The Input Terminal is uniquely identified by the value in the bTerminalID field. No other Unit or Terminal within

the AudioControl interface may have the same ID. This value shall be passed in the Entity ID field (part of the

wIndex field) of each request that is directed to the Terminal.

Release 3.0 September 22, 2016 67

The wTerminalType field provides pertinent information about the physical entity that the Input Terminal

represents. This could be a USB OUT endpoint, an external Line In connection, a microphone, etc. A complete list

of Terminal Type codes is provided in a separate document, USB Audio Terminal Types that is considered part of

this specification.

The bAssocTerminal field is used to associate an Output Terminal to this Input Terminal, effectively implementing

a bi-directional Terminal pair. If no association exists, the bAssocTerminal field shall be set to zero.

The Host software can treat the associated Terminals as being physically related. In many cases, one Terminal

cannot exist without the other. A typical example of such a Terminal pair is an Input Terminal, which represents

the microphone, and an Output Terminal, which represents the earpiece of a headset.

The bCSourceID contains a constant indicating to which Clock Entity the Clock Input Pin of this Input Terminal is

connected.

The wClusterDescrID field contains the unique ID of the Cluster descriptor that characterizes the logical Cluster

that leaves the Input Terminal over the single Output Pin (‘downstream’ connection). For a detailed description of

the Cluster descriptor, see Section 4.3, “Cluster Descriptor”.

The wExTerminalDescrID field contains the unique ID of the Extended Terminal descriptor that is associated with

this Terminal. For a detailed description of the Extended Terminal descriptor, see Section 4.5.2.3, “Extended

Terminal Descriptor.”

 The wConnectorsDescrID field contains the unique ID of the Connectors descriptor that is associated with this

Terminal. For a detailed description of the Connectors descriptor, see Section 4.5.2.4, “Connectors Descriptor.”

An ID of a String descriptor is provided to further describe the Input Terminal.

The following table presents an outline of the Input Terminal descriptor.

Table 4-16: Input Terminal Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 20.

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant INPUT_TERMINAL descriptor subtype.

3 bTerminalID 1 Number Value uniquely identifying the Terminal
within the Audio Function. This value is used
in all requests to address this Terminal.

4 wTerminalType 2 Constant Constant characterizing the type of
Terminal. See USB Audio Terminal Types.

6 bAssocTerminal 1 Number ID of the Output Terminal to which this Input
Terminal is associated.

7 bCSourceID 1 Number ID of the Clock Entity to which this Input
Terminal is connected.

8 bmControls 4 Bitmap D1..0: Insertion Control.

D3..2: Overload Control.

D5..4: Underflow Control.

D7..6: Overflow Control.

D31..8: Reserved.

Release 3.0 September 22, 2016 68

Offset Field Size Value Description

12 wClusterDescrID 2 Number ID of the Cluster descriptor for this Input
Terminal.

14 wExTerminalDescrID 2 Number ID of the Extended Terminal descriptor for
this Input Terminal. Shall be set to zero if no
Extended Terminal descriptor is present.

16 wConnectorsDescrID 2 Number ID of the Connectors descriptor for this Input
Terminal. Shall be set to zero if no
Connectors descriptor is present.

18 wTerminalDescrStr 2 wStrDescrID ID of a class-specific String descriptor,
describing the Input Terminal.

4.5.2.2 OUTPUT TERMINAL DESCRIPTOR

The Output Terminal descriptor (OTD) provides information to the Host that is related to the functional aspects of

the Output Terminal.

The Output Terminal is uniquely identified by the value in the bTerminalID field. No other Unit or Terminal within

the AudioControl interface may have the same ID. This value shall be passed in the Entity ID field (part of the

wIndex field) of each request that is directed to the Terminal.

The wTerminalType field provides pertinent information about the physical entity the Output Terminal represents.

This could be a USB IN endpoint, an external Line Out connection, a speaker system etc. A complete list of Terminal

Type codes is provided in a separate document, USB Audio Terminal Types that is considered part of this

specification.

The bAssocTerminal field is used to associate an Input Terminal to this Output Terminal, effectively implementing

a bi-directional Terminal pair. If no association exists, the bAssocTerminal field shall be set to zero.

The Host software can treat the associated Terminals as being physically related. In many cases, one Terminal

cannot exist without the other. A typical example of such a Terminal pair is an Input Terminal, which represents

the microphone, and an Output Terminal, which represents the earpiece of a headset.

The bSourceID field is used to describe the connectivity for this Terminal. It contains the ID of the Unit or Terminal

to which this Output Terminal is connected via its Input Pin. The Cluster descriptor, describing the logical channels

entering the Output Terminal is not repeated here. It is up to the Host software to trace the connection ‘upstream’

to locate the Cluster descriptor pertaining to this Cluster.

The bCSourceID contains a constant indicating to which Clock Entity the Clock Input Pin of this Output Terminal is

connected.

The wExTerminalDescrID field contains the unique ID of the Extended Terminal descriptor that is associated with

this Terminal. For a detailed description of the Extended Terminal descriptor, see Section 4.5.2.3, “Extended

Terminal Descriptor.”

The wConnectorsDescrID field contains the unique ID of the Connectors descriptor that is associated with this

Terminal. For a detailed description of the Connectors descriptor, see Section 4.5.2.4, “Connectors Descriptor.”

An ID of a String descriptor is provided to further describe the Output Terminal.

The following table presents an outline of the Output Terminal descriptor.

Release 3.0 September 22, 2016 69

Table 4-17: Output Terminal Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 19.

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant OUTPUT_TERMINAL descriptor subtype.

3 bTerminalID 1 Number Value uniquely identifying the Terminal
within the Audio Function. This value is used
in all requests to address this Terminal.

4 wTerminalType 2 Constant Constant characterizing the type of
Terminal. See USB Audio Terminal Types.

6 bAssocTerminal 1 Number Value identifying the Input Terminal to
which this Output Terminal is associated.

7 bSourceID 1 Number ID of the Unit or Terminal to which this
Terminal is connected.

8 bCSourceID 1 Number ID of the Clock Entity to which this Output
Terminal is connected.

9 bmControls 4 Bitmap D1..0: Insertion Control.

D3..2: Overload Control.

D5..4: Underflow Control.

D7..6: Overflow Control.

D31..8: Reserved.

13 wExTerminalDescrID 2 Number ID of the Extended Terminal descriptor for
this Output Terminal. Shall be set to zero if
no Extended Terminal descriptor is present.

15 wConnectorsDescrID 2 Number ID of the Connectors descriptor for this
Output Terminal. Shall be set to zero if no
Connectors descriptor is present.

17 wTerminalDescrStr 2 wStrDescrID ID of a class-specific String descriptor,
describing the Output Terminal.

4.5.2.3 EXTENDED TERMINAL DESCRIPTOR

The Extended Terminal descriptor optionally returns additional physical information about the channels that enter

or leave the Terminal. It always uses the High Capability representation.

Release 3.0 September 22, 2016 70

Figure 4-6: Extended Terminal Descriptor

The descriptor consists of a fixed Header, followed by an optional Common Block, followed by as many Channel

Blocks as there are channels in the Cluster of the Terminal.

4.5.2.3.1 EXTENDED TERMINAL DESCRIPTOR HEADER

The Header starts with the wLength field that contains the total number of bytes in the entire descriptor.

The wDescriptorID field contains an ID number that uniquely identifies the descriptor within the Audio Function.

The value zero is reserved and shall not be used as a valid Extended Terminal descriptor ID.

The bNrChannels field indicates the number of audio channels present in the logical Cluster of the Terminal.

Table 4-18: Extended Terminal Descriptor Header

Offset Field Size Value Description

0 wLength 2 Number Total length of the Cluster descriptor, in
bytes.

2 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

3 bDescriptorSubtype 1 Constant EXTENDED_TERMINAL descriptor subtype.

4 wDescriptorID 2 Number Unique ID of this Extended Terminal
descriptor.

6 bNrChannels 1 Number Number of channels present in the Cluster of
the Terminal: n.

Release 3.0 September 22, 2016 71

4.5.2.3.2 EXTENDED TERMINAL DESCRIPTOR BLOCK

The Extended Terminal descriptor Header is followed by a number of Extended Terminal descriptor Blocks. There is

an optional Common Block, followed by as many Channel Blocks as there are channels in the Cluster of the

Terminal. Each Block consists of a number of Segments.

The Common Block consists of Segments that contain relevant information about characteristics of the Terminal as

a whole.

A Channel Block consists of Segments that contain relevant information about that channel’s physical

characteristics. All Segments are optional. It is highly recommended that the same layout is used for each Channel

Block, i.e. the same Segments appear in the same order in each Channel Block. Figure 4-7 further illustrates the

above concepts.

Figure 4-7: Extended Terminal Channel Block

4.5.2.3.3 SEGMENTS

There are two types of Segments. Common Block Segments contain pertinent information about the Terminal as a

whole. Channel Block Segments contain pertinent information about certain aspects of a particular channel in the

Cluster of the Terminal. Both Segment types share the same layout.

The bSegmentType field describes the Segment Type (Common Block or Channel Block) and also the type of

content contained in the Segment.

The layout for a Segment is always as follows:

Table 4-19: Cluster Descriptor Segment

Offset Field Size Value Description

0 wLength 2 Number Length of the Segment, in bytes: 3+n.

2 bSegmentType 1 Constant Describes the Segment Type and the type of
content in the Segment.

3 Segment-specific n Segment-specific content.

Release 3.0 September 22, 2016 72

4.5.2.3.3.1 END SEGMENT

Each Block is terminated by an End Segment. The End Segment marks the end of the variable length Block. The End

Segment does not have a Segment-specific section and is structured as follows:

Table 4-20: End Segment

Offset Field Size Value Description

0 wLength 2 Number Length of the End Segment, in bytes: 3.

2 bSegmentType 1 Constant END_SEGMENT.

4.5.2.3.3.2 COMMON BLOCK SEGMENTS

The following Common Block Segment types are defined:

 Vendor-specific

Values for the Common Block Segment types can be found in Appendix A.18, “Extended Terminal Segment Types.”

4.5.2.3.3.2.1 VENDOR-DEFINED SEGMENT

Vendors are allowed to add vendor-defined Segments to the Common Block to convey additional, proprietary

Terminal information. The vendor-defined Segment shall use the following layout:

Table 4-21: Vendor-defined Segment

Offset Field Size Value Description

0 wLength 2 Number Length of the End Segment, in bytes: 3+n.

2 bSegmentType 1 Constant TERMINAL_VENDOR_DEFINED.

3 Vendor-defined n N/A Vendor-defined extension of the Segment.

4.5.2.3.3.3 CHANNEL BLOCK SEGMENTS

The following Channel Block Segment types are defined:

 Bandwidth

 Magnitude Response

 Magnitude/Phase Response

 Position

 Vendor-specific

Values for the Channel Block Segment types can be found in Appendix A.18, “Extended Terminal Segment Types.”

4.5.2.3.3.3.1 BANDWIDTH SEGMENT

The Bandwidth Segment contains basic information about the audio bandwidth in the channel. The bandwidth is

specified by providing the lower and upper -3 dB frequency points, in Hz, of the available band in the dMinFreq

and dMaxFreq fields.

Release 3.0 September 22, 2016 73

Table 4-22: Bandwidth Segment

Offset Field Size Value Description

0 wLength 2 Number Length of the Bandwidth Segment, in bytes:
11.

2 bSegmentType 1 Constant CHANNEL_BANDWIDTH.

3 dMinFreq 4 Number Lower -3 dB frequency point.

7 dMaxFreq 4 Number Upper -3 dB frequency point.

4.5.2.3.3.3.2 MAGNITUDE RESPONSE

The Magnitude Response Segment contains detailed information about the magnitude of the transfer function

(frequency response) of the channel. The magnitude is specified as an array of [frequency point, magnitude] pairs.

The frequency values are specified in Hz and the magnitude values can range from +127.9961 dB (0x7FFF) down to

-127.9961 dB (0x8001) in steps of 1/256 dB or 0.00390625 dB (0x0001). In addition, code 0x8000, representing

silence (i.e., - dB), may be used as well.

Table 4-23: Magnitude Segment

Offset Field Size Value Description

0 wLength 2 Number Length of the Magnitude Response Segment,
in bytes: 3+n*6.

2 bSegmentType 1 Constant CHANNEL_MAGNITUDE_RESPONSE.

3 dFreq(1) 4 Number First frequency point.

7 wMagnitude(1) 2 Number First magnitude value.

… … … …

3+(n-1)*6 dFreq(n) 4 Number Last frequency point.

7+(n-1)*6 wMagnitude(n) 2 Number Last magnitude value.

4.5.2.3.3.3.3 MAGNITUDE/PHASE RESPONSE

The Magnitude/Phase Response Segment contains detailed information about the magnitude and phase of the

transfer function (frequency response) of the channel. The magnitude/phase is specified as an array of [frequency

point, magnitude, phase] triplets. The frequency values are specified in Hz. The magnitude values can range from

+127.9961 dB (0x7FFF) down to -127.9961 dB (0x8001) in steps of 1/256 dB or 0.00390625 dB (0x0001). In

addition, code 0x8000, representing silence (i.e., - dB), may be used as well. The phase values can range from

+0.99996948242 * down to - (0x8000) in steps of 1/32768 * (0x0001).

Table 4-24: Magnitude/Phase Segment

Offset Field Size Value Description

0 wLength 2 Number Length of the Magnitude Response Segment,
in bytes: 3+n*8.

2 bSegmentType 1 Constant CHANNEL_MAGNITUDE/PHASE_RESPONSE.

3 dFreq(1) 4 Number First frequency point.

7 wMagnitude(1) 2 Number First magnitude value.

9 wPhase(1) 2 Number First phase value.

Release 3.0 September 22, 2016 74

Offset Field Size Value Description

… … … …

3+(n-1)*8 dFreq(n) 4 Number Last frequency point.

7+(n-1)*8 wMagnitude(n) 2 Number Last magnitude value.

9+(n-1)*8 wPhase(n) 2 Number Last phase value.

4.5.2.3.3.3.4 POSITION_XYZ SEGMENT

The Position_XYZ Segment contains the (X, Y, Z) Cartesian coordinates of the source or sink associated with the

channel. The X, Y, and Z values are expressed in micrometers (µm) and are relative to an unspecified origin at (0, 0,

0). The Audio Function may have out-of-band means to indicate to the Host where the actual origin of the

coordinate system is located on the device. The value 0xFFFFFFFF has special meaning. It is used to indicate that

the coordinate in a particular dimension is unknown.

Table 4-25: Position Segment

Offset Field Size Value Description

0 wLength 2 Number Length of the Segment, in bytes: 15.

2 bSegmentType 1 Constant CHANNEL_POSITION_XYZ.

3 dX 4 Number X-coordinate of the audio source or sink,
associated with the channel.

7 dY 4 Number Y-coordinate of the audio source or sink,
associated with the channel.

11 dZ 4 Number Z-coordinate of the audio source or sink,
associated with the channel.

4.5.2.3.3.3.5 POSITION_RΘΦ SEGMENT

The Position_ RΘΦ Segment contains the (R, Θ, Φ) spherical coordinates of the source or sink associated with the

channel. The R, Θ, and Φ values are expressed in µm, µrad and µrad respectively, and are relative to an unspecified

origin at (0, 0, 0). The Audio Function may have out-of-band means to indicate to the Host where the actual origin

of the coordinate system is located on the device. The value 0xFFFFFFFF has special meaning. It is used to indicate

that the coordinate in a particular dimension is unknown.

Table 4-26: Position Segment

Offset Field Size Value Description

0 wLength 2 Number Length of the Segment, in bytes: 15.

2 bSegmentType 1 Constant CHANNEL_POSITION_ RΘΦ.

3 dR 4 Number R-coordinate of the audio source or sink,
associated with the channel.

7 dΘ 4 Number Θ-coordinate of the audio source or sink,
associated with the channel.

11 dΦ 4 Number Φ-coordinate of the audio source or sink,
associated with the channel.

Release 3.0 September 22, 2016 75

4.5.2.3.3.3.6 VENDOR-DEFINED SEGMENT

Vendors are allowed to add vendor-defined Segments to the Channel Block to convey additional, proprietary

channel information. The vendor-defined Segment shall use the following layout:

Table 4-27: Vendor-defined Segment

Offset Field Size Value Description

0 wLength 2 Number Length of the End Segment, in bytes: 3+n.

2 bSegmentType 1 Constant CHANNEL_VENDOR_DEFINED.

3 Vendor-defined n N/A Vendor-defined extension of the Segment.

4.5.2.4 CONNECTORS DESCRIPTOR

The optional Connectors descriptor returns information about the physical attributes of all Connectors, associated

with either an Input or an Output Terminal. The Connectors descriptor always uses the High Capability

representation.

The wDescriptorID field contains an ID number that uniquely identifies the descriptor within the Audio Function.

The value zero is reserved and shall not be used as a valid Connectors descriptor ID.

The bNrConnectors field indicates how many distinct physical Connectors are associated with this Terminal.

Connectors are numbered from 1 to the total number of Connectors, associated with this Terminal. For each

Connector, the descriptor contains a group of fields that further describe the Connector.

The baConID(i) field contains a unique identifier for Connector(i). The primary use for this is to indicate that the

same Connector is associated with multiple Terminals. For example, one headset Connector incorporates the

signals for the stereo headphone of the headset and also the signal for the mono microphone. This Connector

would therefore be part of the Output Terminal that represents the stereo headphone and also be part of the

Input Terminal that represents the microphone. This Connector would then be listed in both the Input Terminal

and Output Terminal Connectors descriptor, using the same baConID(i) value in both descriptors to indicate the

binding. Note that the baConID(i) value is never used as an identifier for an addressable Entity and therefore,

baConID(i) values may overlap with Entity ID values.

The waClusterDescrID(i) contains the unique ID of a physical Cluster descriptor, describing the actual physical

channels that are carried over Connector(i). Note that in most cases, the union of all the physical Cluster

descriptors, referenced by the Connectors descriptor, will be identical to the logical Cluster descriptor, associated

with the Pin of the Terminal. It is allowed for channels to appear in more than one physical Cluster descriptor to

accommodate the situation where the same physical channels are available on different Connectors. For example,

the same channel may be available on a balanced XLR connector as well as on an unbalanced BNC connector. For a

detailed description of the Cluster descriptor, see Section 4.3, “Cluster Descriptor”.

The baConType(i) field contains a value that identifies the physical appearance of Connector(i). The constant

definitions for the baConTyp(i) field can be found in Appendix A.24, “Connector Types”.

The bmaConAttributes(i) field contains a bitmap that identifies the gender of Connector(i) (D1..0) and also

indicates whether this Control is able to detect insertion and removal. If this bit is set for Connector(i), then bit Di-1

in the bitmap returned by the Insertion Control request indicates whether this Connector is inserted (Di-1 = 1) or

not (Di-1 = 0). If this bit is clear for Connector(i), then bit Di-1 in the bitmap returned by the Insertion Control request

has no meaning and shall be ignored.

Release 3.0 September 22, 2016 76

The waConDescrStr(i) field is the ID of a String descriptor that contains a human-readable identifier for

Connector(i). It is recommended that this string makes it easy to uniquely identify the Connector on the device’s

chassis. This could be achieved by explicitly labeling the Connector on the device’s enclosure with the

waConDescrStr(i) string content.

The daConColor(i) field contains either 0x00 in the upper byte and the RGB-coded color of Connector(i) in the

lower 3 bytes or 0x01 in the upper byte and 0x000000 in the lower 3 bytes to indicate color unspecified.

Table 4-28: Connectors Descriptor

Offset Field Size Value Description

0 wLength 2 Number Size of this descriptor, in bytes: 7+n*11.

2 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

3 bDescriptorSubtype 1 Constant CONNECTORS descriptor subtype.

4 wDescriptorID 2 Number Unique ID of this Connectors descriptor.

6 bNrConnectors 1 Number The number of Connectors associated
with this Terminal: n

7 baConID(1) 1 Number ID for Connector(1). Can be used to
indicate that the same Connector is
associated with multiple Terminals.

8 waClusterDescrID(1) 2 Number ID of the physical Cluster descriptor
transported over Connector(1).

10 baConType(1) 1 Constant The Connector Type of Connector(1).

11 bmaConAttributes(1) 1 Bitmap D1..0: Gender:

 00: Gender Neutral.

 01: Male.

 10: Female.

 11: Reserved.

D2: Insertion/Removal Reporting:

 0: No.

 1: Yes.

D7..3: Reserved.

12 waConDescrStr(1) 2 wStrDescrID ID of a String descriptor that provides a
physical description of Connector(1).

14 daConColor(1) 4 Number The Connector color of Connector(1).

… … … … …

7+(n-1)*11 baConID(n) Unique identifier for Connector(n). Can
be used to indicate that the same
Connector is associated with multiple
Terminals.

8+(n-1)*11 waClusterDescrID(n) 2 Number The unique ID of the physical Cluster
descriptor transported over
Connector(n).

10+(n-1)*11 baConType(n) 1 Constant The Connector Type of Connector(n).

Release 3.0 September 22, 2016 77

11+(n-1)*11 bmaConAttributes(n) 1 Bitmap D1..0: Gender:

 00: Gender Neutral.

 01: Male.

 10: Female.

 11: Reserved.

D2: Insertion/Removal Reporting:

 0: No.

 1: Yes.

D7..3: Reserved.

12+(n-1)*11 waConDescrStr(n) 2 wStrDescrID ID of a String descriptor that provides a
physical description of Connector(n).

14+(n-1)*11 daConColor(n) 4 Number The Connector color of Connector(n).

4.5.2.5 MIXER UNIT DESCRIPTOR

The Mixer Unit is uniquely identified by the value in the bUnitID field of the Mixer Unit descriptor (MUD). No other

Unit or Terminal within the AudioControl interface may have the same ID. This value shall be passed in the Entity

ID field (part of the wIndex field) of each request that is directed to the Mixer Unit.

The bNrInPins field contains the number of Input Pins (p) of the Mixer Unit. This evidently equals the number of

Clusters that enter the Mixer Unit. The connectivity of the Input Pins is described via the baSourceID() array,

containing p elements. The index I into the array is one-based and directly related to the Input Pin numbers.

baSourceID(i) contains the ID of the Unit or Terminal to which Input Pin I is connected. The Cluster descriptors,

describing the logical channels entering the Mixer Unit are not repeated here. It is up to the Host software to trace

the connections ‘upstream’ to locate the Cluster descriptors pertaining to the Clusters.

Because a Mixer Unit can redefine the spatial locations of the logical output channels, contained in its output

Cluster, there is a need for a Mixer output Cluster descriptor.

The wClusterDescrID contains the unique ID of the Cluster descriptor that characterizes the Cluster that leaves the

Mixer Unit over the single Output Pin (‘downstream’ connection). For a detailed description of the Cluster

descriptor, see Section 4.3, “Cluster Descriptor”.

As mentioned before, every input channel can virtually be mixed into all of the output channels. If n is the total

number of logical input channels, contained in all the Clusters that are entering the Mixer Unit:

𝑛 = ∑ (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑖)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠

𝑖=1

and m is the number of logical output channels, then there are (n · m) Mixer Controls in the Mixer Unit, some of

which may not be programmable.

Note: (n · m) shall be limited to 256.

The Mixer Unit descriptor reports which Controls are programmable in the bmMixerControls bitmap field. This

bitmap shall be interpreted as a two-dimensional bit array that has a row for each logical input channel and a

column for each logical output channel. If a bit at position [u, v] is set to one, this means that the Mixer Unit

contains a programmable Mixer Control that connects input channel u to output channel v. If bit [u, v] is set to

zero, this indicates that the connection between input channel u and output channel v is non-programmable. The

valid range for u is from one to n. The valid range for v is from one to m.

Release 3.0 September 22, 2016 78

Each Mixer Control is assigned a unique Mixer Control Number (MCN). This number is used to address a particular

Mixer Control in a Get/Set Mixer Control request. The MCN is calculated as follows:

𝑀𝐶𝑁 = (𝑢 − 1). 𝑚 + (𝑣 − 1)

The following figure presents a more graphical explanation.

Figure 4-8: Mixer internals

The current setting of the Mixer Control (both programmable and fixed) at any position in the matrix can always be

retrieved through the appropriate request. Therefore, the Mixer Unit shall always implement the Get request with

the CUR attribute for each node in the matrix. See Section 5.2.1.7, “Mixer Unit Control Request” for further details.

The bmMixerControls field stores the bit array row after row where the MSb of the first (highest) byte

corresponds to the connection between input channel 1 and output channel 1. If (n · m) is not an integer multiple

of 8, the bit array is padded with zeroes until an integer number of bytes is occupied. The number of bytes used to

store the bit array, N, can be calculated as follows:

IF ((n * m) MOD 8) <> 0 THEN

 N = ((n * m) DIV 8) + 1

ELSE

 N = ((n * m) DIV 8)

Release 3.0 September 22, 2016 79

An ID of a String descriptor is provided to further describe the Mixer Unit.

The following table details the structure of the Mixer Unit descriptor.

Table 4-29: Mixer Unit Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 13+p+N.

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant MIXER_UNIT descriptor subtype.

3 bUnitID 1 Number Value uniquely identifying the Unit within
the Audio Function. This value is used in all
requests to address this Unit.

4 bNrInPins 1 Number Number of Input Pins of this Unit: p

5 baSourceID(1) 1 Number ID of the Unit or Terminal to which the first
Input Pin of this Mixer Unit is connected.

… … … … …

5+(p-1) baSourceID (p) 1 Number ID of the Unit or Terminal to which the last
Input Pin of this Mixer Unit is connected.

5+p wClusterDescrID 2 Number ID of the Cluster descriptor for this Mixer
Unit.

7+p bmMixerControls N Number Bitmap indicating which Mixer Controls are
programmable.

7+p+N bmControls 4 Bitmap D1..0: Underflow Control.

D3..2: Overflow Control.

D31..4: Reserved.

11+p+N wMixerDescrStr 2 wStrDescrID ID of a class-specific String descriptor,
describing the Mixer Unit.

4.5.2.6 SELECTOR UNIT DESCRIPTOR

The Selector Unit is uniquely identified by the value in the bUnitID field of the Selector Unit descriptor (SUD). No

other Unit or Terminal within the AudioControl interface may have the same ID. This value shall be passed in the

Entity ID field (part of the wIndex field) of each request that is directed to the Selector Unit.

The bNrInPins field contains the number of Input Pins (p) of the Selector Unit. The connectivity of the Input Pins is

described via the baSourceID() array that contains p elements. The index I into the array is one-based and directly

related to the Input Pin numbers. baSourceID(i) contains the ID of the Unit or Terminal to which Input Pin I is

connected.

The Cluster descriptors, describing the logical channels that enter the Selector Unit are not repeated here. In order

for a Selector Unit to be legally connected, all of the Clusters that enter the Selector Unit shall have exactly the

same Cluster descriptor content.

An ID of a String descriptor is provided to further describe the Selector Unit.

The following table details the structure of the Selector Unit descriptor.

Release 3.0 September 22, 2016 80

Table 4-30: Selector Unit Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 11+p.

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant SELECTOR_UNIT descriptor subtype.

3 bUnitID 1 Number Value uniquely identifying the Unit within
the Audio Function. This value is used in all
requests to address this Unit.

4 bNrInPins 1 Number Number of Input Pins of this Unit: p

5 baSourceID(1) 1 Number ID of the Unit or Terminal to which the first
Input Pin of this Selector Unit is connected.

… … … … …

5+(p-1) baSourceID (p) 1 Number ID of the Unit or Terminal to which the last
Input Pin of this Selector Unit is connected.

5+p bmControls 4 Bitmap D1..0: Selector Control.

D31..2: Reserved.

9+p wSelectorDescrStr 2 wStrDescrID ID of a class-specific String descriptor,
describing the Selector Unit.

4.5.2.7 FEATURE UNIT DESCRIPTOR

The Feature Unit is uniquely identified by the value in the bUnitID field of the Feature Unit descriptor (FUD). No

other Unit or Terminal within the AudioControl interface may have the same ID. This value shall be passed in the

Entity ID field (part of the wIndex field) of each request that is directed to the Feature Unit.

The bSourceID field is used to describe the connectivity for this Feature Unit. It contains the ID of the Unit or

Terminal to which this Feature Unit is connected via its Input Pin. The Cluster descriptor, describing the logical

channels entering the Feature Unit is not repeated here. It is up to the Host software to trace the connection

‘upstream’ to locate the Cluster descriptor pertaining to this Cluster.

An ID of a String descriptor is provided to further describe the Feature Unit.

The layout of the Feature Unit descriptor is detailed in the following table.

Table 4-31: Feature Unit Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 7+(ch+1)*4

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant FEATURE_UNIT descriptor subtype.

3 bUnitID 1 Number Value uniquely identifying the Unit within
the Audio Function. This value is used in all
requests to address this Unit.

4 bSourceID 1 Number ID of the Unit or Terminal to which this
Feature Unit is connected.

Release 3.0 September 22, 2016 81

Offset Field Size Value Description

5 bmaControls(0) 4 Bitmap The Controls bitmap for master channel 0:

D1..0: Mute Control.

D3..2: Volume Control.

D5..4: Bass Control.

D7..6: Mid Control.

D9..8: Treble Control.

D11..10: Graphic Equalizer Control.

D13..12: Automatic Gain Control.

D15..14: Delay Control.

D17..16: Bass Boost Control.

D19..18: Loudness Control.

D21..20: Input Gain Control.

D23..22: Input Gain Pad Control.

D25..24: Phase Inverter Control.

D27..26: Underflow Control.

D29..28: Overfow Control.

D31..30: Reserved.

5+(1*4) bmaControls(1) 4 Bitmap The Controls bitmap for logical channel 1.

… … … … …

5+(ch*4) bmaControls(ch) 4 Bitmap The Controls bitmap for logical channel ch.

5+(ch+1)*4 wFeatureDescrStr 2 wStrDescrID ID of a class-specific String descriptor,
describing this Feature Unit.

4.5.2.8 SAMPLING RATE CONVERTER UNIT DESCRIPTOR

The Sampling Rate Converter Unit descriptor (RUD) provides information to the Host that is related to the

functional aspects of the SRC Unit.

The SRC Unit is uniquely identified by the value in the bUnitID field. No other Unit or Terminal within the

AudioControl interface may have the same ID. This value shall be passed in the Entity ID field (part of the wIndex

field) of each request that is directed to the Feature Unit.

The bSourceID field is used to describe the connectivity for this SRC Unit. It contains the ID of the Unit or Terminal

to which this SRC Unit is connected via its Input Pin. The Cluster descriptor, describing the logical channels entering

the SRC Unit is not repeated here. It is up to the Host software to trace the connection ‘upstream’ to locate the

Cluster descriptor pertaining to this Cluster.

The bCSourceInID contains a constant indicating to which Clock Entity the Clock Input Pin associated with the

audio Input Pin is connected.

The bCSourceOutID contains a constant indicating to which Clock Entity the Clock Input Pin associated with the

audio Output Pin is connected.

An ID of a String descriptor is provided to further describe the SRC Unit.

The following table presents an outline of the SRC Unit descriptor.

Release 3.0 September 22, 2016 82

Table 4-32: Sampling Rate Converter Unit Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 9.

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant SAMPLE_RATE_CONVERTER descriptor
subtype.

3 bUnitID 1 Number Value uniquely identifying the Unit within
the Audio Function. This value is used in all
requests to address this Unit.

4 bSourceID 1 Number ID of the Unit or Terminal to which this SRC
Unit is connected.

5 bCSourceInID 1 Number ID of the Clock Entity to which this SRC Unit
input section is connected.

6 bCSourceOutID 1 Number ID of the Clock Entity to which this SRC Unit
output section is connected.

7 wSRCDescrStr 2 wStrDescrID ID of a class-specific String descriptor,
describing the SRC Unit.

4.5.2.9 EFFECT UNIT DESCRIPTOR

The Effect Unit is uniquely identified by the value in the bUnitID field of the Effect Unit descriptor (EUD). No other

Unit or Terminal within the AudioControl interface may have the same ID. This value shall be passed in the Entity

ID field (part of the wIndex field) of each request that is directed to the Effect Unit.

The wEffectType field contains a value that fully identifies the Effect Unit. For a list of all supported Effect Unit

Types, see Appendix A.19, “Effect Unit Effect Types.”

The bSourceID field is used to describe the connectivity for this Effect Unit. It contains the ID of the Unit or

Terminal to which this Effect Unit is connected via its Input Pin. The Cluster descriptor, describing the logical

channels entering the Effect Unit is not repeated here. It is up to the Host software to trace the connection

‘upstream’ to locate the Cluster descriptor pertaining to this Cluster.

bmaControls() is a (ch+1)-element array of 4-byte bitmaps, each following the same semantics as the bmControls

field in other descriptors.

An ID of a String descriptor is provided to further describe the Effect Unit.

The following table outlines the Effect Unit descriptor.

Table 4-33: Effect Unit Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 17+(ch*4).

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant EFFECT_UNIT descriptor subtype.

3 bUnitID 1 Number Value uniquely identifying the Unit within
the Audio Function. This value is used in all
requests to address this Unit.

Release 3.0 September 22, 2016 83

Offset Field Size Value Description

4 wEffectType 2 Constant Constant identifying the type of effect this
Unit is performing.

6 bSourceID 1 Number ID of the Unit or Terminal to which this
Effect Unit is connected.

7 bmaControls(0) 4 Bitmap The Controls bitmap for master channel 0:

D31..0: Effect-specific allocation.

11 bmaControls(1) 4 Bitmap The Controls bitmap for channel 1:

D31..0: Effect-specific allocation.

… … … … …

11+(ch*4) bmaControls(ch) 4 Bitmap The Controls bitmap for channel ch:

D31..0: Effect-specific allocation.

15+(ch*4) wEffectsDescrStr 2 wStrDescrID ID of a class-specific String descriptor,
describing this Effect Unit.

4.5.2.9.1 PARAMETRIC EQUALIZER SECTION EFFECT UNIT DESCRIPTOR

The wEffectType field of the common Effect Unit descriptor contains the value PARAM_EQ_SECTION_EFFECT. (See

Appendix A.19, “Effect Unit Effect Types.”

The following table outlines the PEQS Effect Unit descriptor. It is identical to the common Effect Unit descriptor,

except for some field values. It is repeated here for clarity.

The Enable Control shall always be present and implemented as Read-Write. It is therefore not represented in the

bmControls field.

Table 4-34: Parametric Equalizer Section Effect Unit Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 17+(ch*4)

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant EFFECT_UNIT descriptor subtype.

3 bUnitID 1 Number Value uniquely identifying the Unit within
the Audio Function. This value is used in all
requests to address this Unit.

4 wEffectType 2 Constant PARAM_EQ_SECTION_EFFECT effect type.

6 bSourceID 1 Number ID of the Unit or Terminal to which this
Effect Unit is connected.

7 bmaControls(0) 4 Bitmap The Controls bitmap for master channel 0:

D1..0: Center Frequency Control.

D3..2: Q Factor Control.

D5..4: Gain Control.

D7..6: Underflow Control.

D9..8: Overflow Control.

D31..10: Reserved.

11 bmaControls(1) 4 Bitmap The Controls bitmap for logical channel 1.

Release 3.0 September 22, 2016 84

Offset Field Size Value Description

… … … … …

11+(ch*4) bmaControls(ch) 4 Bitmap The Controls bitmap for logical channel ch.

15+(ch*4) wEffectsDescrStr 2 wStrDescrID ID of a class-specific String descriptor,
describing this Effect Unit.

4.5.2.9.2 REVERBERATION EFFECT UNIT DESCRIPTOR

The wEffectType field of the common Effect Unit descriptor contains the value REVERBERATION_EFFECT. (see

Appendix A.19, “Effect Unit Effect Types.”

The following table outlines the Reverberation Effect Unit descriptor. It is identical to the common Effect Unit

descriptor, except for some field values. It is repeated here for clarity.

The Enable Control shall always be present and implemented as Read-Write. It is therefore not represented in the

bmControls field.

Table 4-35: Reverberation Effect Unit Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 17+(ch*4).

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant EFFECT_UNIT descriptor subtype.

3 bUnitID 1 Number Value uniquely identifying the Unit within
the Audio Function. This value is used in all
requests to address this Unit.

4 wEffectType 2 Constant REVERBERATION_EFFECT effect type.

6 bSourceID 1 Number ID of the Unit or Terminal to which this
Effect Unit is connected.

7 bmaControls(0) 4 Bitmap The Controls bitmap for master channel 0:

D1..0: Type Control.

D3..2: Level Control.

D5..4: Time Control.

D7..6: Delay Feedback Control.

D9..8: Pre-Delay Control.

D11..10: Density Control.

D13..12: Hi-Freq Roll-Off Control.

D15..14: Underflow Control.

D17..16: Overflow Control.

D31..18: Reserved.

11 bmaControls(1) 4 Bitmap The Controls bitmap for logical channel 1.

… … … … …

11+(ch*4) bmaControls(ch) 4 Bitmap The Controls bitmap for logical channel ch.

15+(ch*4) wEffectsDescrStr 2 wStrDescrID ID of a class-specific String descriptor,
describing this Effect Unit.

Release 3.0 September 22, 2016 85

4.5.2.9.3 MODULATION DELAY EFFECT UNIT DESCRIPTOR

The wEffectType field of the common Effect Unit descriptor contains the value MOD_DELAY_EFFECT. (see

Appendix A.19, “Effect Unit Effect Types.”

The following table outlines the Modulation Delay Effect Unit descriptor. It is identical to the common Effect Unit

descriptor, except for some field values. It is repeated here for clarity.

Table 4-36: Modulation Delay Effect Unit Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 17+(ch*4).

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant EFFECT_UNIT descriptor subtype.

3 bUnitID 1 Number Value uniquely identifying the Unit within
the Audio Function. This value is used in all
requests to address this Unit.

4 wEffectType 2 Constant MOD_DELAY_EFFECT effect type.

6 bSourceID 1 Number ID of the Unit or Terminal to which this
Effect Unit is connected.

7 bmaControls(0) 4 Bitmap The Controls bitmap for master channel 0:

D1..0: Enable Control.

D3..2: Balance Control.

D5..4: Rate Control.

D7..6: Depth Control.

D9..8: Time Control.

D11..10: Feedback Level Control.

D13..12: Underflow Control.

D15..14: Overflow Control.

D31..16: Reserved.

11 bmaControls(1) 4 Bitmap The Controls bitmap for logical channel 1.

… … … … …

11+(ch*4) bmaControls(ch) 4 Bitmap The Controls bitmap for logical channel ch.

15+(ch*4) wEffectsDescrStr 2 wStrDescrID ID of a class-specific String descriptor,
describing this Effect Unit.

4.5.2.9.4 DYNAMIC RANGE COMPRESSOR EFFECT UNIT DESCRIPTOR

The wEffectType field of the common Effect Unit descriptor contains the value DYN_RANGE_COMP_EFFECT. (see

Appendix A.19, “Effect Unit Effect Types.”

The following table outlines the Dynamic Range Compressor Effect Unit descriptor. It is identical to the common

Effect Unit descriptor, except for some field values. It is repeated here for clarity.

Table 4-37: Dynamic Range Compressor Effect Unit Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 17+(ch*4).

Release 3.0 September 22, 2016 86

Offset Field Size Value Description

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant EFFECT_UNIT descriptor subtype.

3 bUnitID 1 Number Value uniquely identifying the Unit within
the Audio Function. This value is used in all
requests to address this Unit.

4 wEffectType 2 Constant DYN_RANGE_COMP_EFFECT effect type.

6 bSourceID 1 Number ID of the Unit or Terminal to which this
Effect Unit is connected.

7 bmaControls(0) 4 Bitmap The Controls bitmap for master channel 0:

D1..0: Enable Control.

D3..2: Compression Ratio Control.

D5..4: MaxAmpl Control.

D7..6: Threshold Control.

D9..8: Attack Time Control.

D11..10: Release Time Control.

D13..12: Underflow Control.

D15..14: Overflow Control.

D31..16: Reserved.

11 bmaControls(1) 4 Bitmap The Controls bitmap for logical channel 1.

… … … … …

11+(ch*4) bmaControls(ch) 4 Bitmap The Controls bitmap for logical channel ch.

15+(ch*4) wEffectsDescrStr 2 wStrDescrID ID of a class-specific String descriptor,
describing this Effect Unit.

4.5.2.10 PROCESSING UNIT DESCRIPTOR

The Processing Unit is uniquely identified by the value in the bUnitID field of the Processing Unit descriptor (PUD).

No other Unit or Terminal within the AudioControl interface may have the same ID. This value shall be passed in

the Entity ID field (part of the wIndex field) of each request that is directed to the Processing Unit.

The wProcessType field contains a value that fully identifies the Processing Unit. For a list of all supported

Processing Unit Types, see Appendix A.20, “Processing Unit Process Types.”

The bNrInPins field contains the number of Input Pins (p) of the Processing Unit. The connectivity of the Input Pins

is described via the baSourceID() array that contains p elements. The index I into the array is one-based and

directly related to the Input Pin numbers. baSourceID(i) contains the ID of the Unit or Terminal to which Input Pin i

is connected. The Cluster descriptors, describing the logical channels entering the Processing Unit are not repeated

here. It is up to the Host software to trace the connections ‘upstream’ to locate the Cluster descriptors pertaining

to the Clusters.

Because a Processing Unit can freely redefine the spatial locations of the logical output channels, contained in its

output Cluster, there is a need for an output Cluster descriptor. The wClusterDescrID field contains the unique ID

of the Cluster descriptor that characterizes the Cluster that leaves the Processing Unit over the single Output Pin

(‘downstream’ connection). For a detailed description of the Cluster descriptor, see Section 4.3, “Cluster

Descriptor”.

Release 3.0 September 22, 2016 87

A Processing Unit shall not support an Enable Control. If the functionality of the Audio Function requires that the

Processing Unit can be bypassed in certain scenarios, then the topology of the Function shall make this explicit

through the use of a Selector Unit where one Input Pin of the Selector Unit is connected to the Output Pin of the

Processing Unit and the other Input Pin of the Selector Unit is connected to an Entity that provides an output

channel Cluster that is compatible with the output Cluster of the Processing Unit. This may be the same Output Pin

to which the Input Pin of the Processing Unit is connected (direct bypass) if the Cluster configuration is not altered

by the Processing Unit.

In general, all Controls are optional. However, some Processing Types may define certain Controls as mandatory.

An ID of a String descriptor is provided to further describe the Processing Unit.

The previous fields are common to all Processing Units. However, depending on the value in the wProcessType

field, a process-specific part is added to the descriptor. The following paragraphs describe these process-specific

parts.

The following table outlines the common part of the Processing Unit descriptor.

Table 4-38: Common Part of the Processing Unit Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 9+p+x.

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant PROCESSING_UNIT descriptor subtype.

3 bUnitID 1 Number Value uniquely identifying the Unit within
the Audio Function. This value is used in all
requests to address this Unit.

4 wProcessType 2 Constant Constant identifying the type of processing
this Unit is performing.

6 bNrInPins 1 Number Number of Input Pins of this Unit: p

7 baSourceID(1) 1 Number ID of the Unit or Terminal to which the first
Input Pin of this Processing Unit is
connected.

… … … … …

7+(p-1) baSourceID (p) 1 Number ID of the Unit or Terminal to which the last
Input Pin of this Processing Unit is
connected.

7+p wProcessingDescrStr 2 wStrDescrID ID of a class-specific String descriptor,
describing this Processing Unit.

9+p Process-specific x N/A A process-specific descriptor is appended to
the common descriptor. See the following
paragraphs.

4.5.2.10.1 UP/DOWN-MIX PROCESSING UNIT DESCRIPTOR

The wProcessType field of the common Processing Unit descriptor contains the value UP/DOWNMIX_PROCESS.

(See Appendix A.20, “Processing Unit Process Types”)

The Up/Down-mix Processing Unit has a single Input Pin. Therefore, the bNrInputs field shall contain the value 1.

Release 3.0 September 22, 2016 88

The Mode Select Control (D1..0) is used to change the behavior of the Processing Unit by selecting different modes

of operation.

The process-specific descriptor of the Up/Down-mix Processing Unit describes the supported modes of operation

of the Processing Unit. Selecting a mode of operation is done by issuing the Set Mode Select Control Request. The

number of supported modes (m) is contained in the bNrModes field. This field is followed by an array of Cluster

descriptor ID fields, waClusterDescrID(). The index i into this array is one-based and directly related to the number

of the mode described by entry waClusterDescrID(i). It is the value i that shall be used as a parameter for the Set

Mode request to select the mode i.

Each waClusterDescrID(i) field contains the unique ID of a Cluster descriptor that describes the output Cluster

configuration when mode i is selected. The Host changing the mode via a Set Mode Select Control request results

in a change of output Cluster descriptor. However, this shall not lead to a High Capability Descriptor interrupt as

the Host itself has initiated the change.

The following table outlines the combination of the common and process-specific Up/Down-mix Processing Unit

descriptors.

Table 4-39: Up/Down-mix Processing Unit Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 15+2*m.

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant PROCESSING_UNIT descriptor subtype.

3 bUnitID 1 Number Value uniquely identifying the Unit within
the Audio Function. This value is used in all
requests to address this Unit.

4 wProcessType 2 Constant UP/DOWNMIX_PROCESS process type.

6 bNrInPins 1 Number Number of Input Pins of this Unit: 1

7 baSourceID(1) 1 Number ID of the Unit or Terminal to which the Input
Pin of this Processing Unit is connected.

8 wProcessingDescrStr 2 wStrDescrID ID of a class-specific String descriptor,
describing this Processing Unit.

10 bmControls 4 Bitmap D1..0: Mode Select Control.

D3..2: Underflow Control.

D5..4: Overflow Control.

D31..6: Reserved.

14 bNrModes 1 Number Number of modes, supported by this
Processing Unit: m

15 waClusterDescrID(1) 2 Number Unique ID of the Cluster descriptor for
mode(1).

… … … … …

15+2*(m-1) waClusterDescrID(m) 2 Number Unique ID of the Cluster descriptor for
mode(m).

Release 3.0 September 22, 2016 89

4.5.2.10.2 STEREO EXTENDER PROCESSING UNIT DESCRIPTOR

The wProcessType field of the common Processing Unit descriptor contains the value

STEREO_EXTENDER_PROCESS. (See Appendix A.20, “Processing Unit Process Types”)

The Stereo Extender Processing Unit has a single Input Pin. Therefore, the bNrInputs field shall contain the value 1.

The input Cluster to the Stereo Extender Processing Unit shall contain only the Left and Right logical input

channels. The output Cluster shall therefore also only contain the Left and Right logical channels. As a

consequence, there is no need for an output Cluster descriptor for this Processing Unit.

There is no process-specific descriptor for the Stereo Extender Processing Unit.

The following table outlines the Stereo Extender Processing Unit descriptor.

Table 4-40: Stereo Extender Processing Unit Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 14.

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant PROCESSING_UNIT descriptor subtype.

3 bUnitID 1 Number Value uniquely identifying the Unit within
the Audio Function. This value is used in all
requests to address this Unit.

4 wProcessType 2 Constant STEREO_EXTENDER_PROCESS process type.

6 bNrInPins 1 Number Number of Input Pins of this Unit: 1

7 baSourceID(1) 1 Number ID of the Unit or Terminal to which the Input
Pin of this Processing Unit is connected.

8 wProcessingDescrStr 2 wStrDescrID ID of a class-specific String descriptor,
describing this Processing Unit.

10 bmControls 4 Bitmap D1..0: Width Control.

D3..2: Underflow Control.

D5..4: Overflow Control.

D31..6: Reserved.

4.5.2.10.3 MULTI-FUNCTION PROCESSING UNIT DESCRIPTOR

The wProcessType field of the Processing Unit descriptor contains the value MULTI_FUNCTION_PROCESS. (See

Appendix A.20, “Processing Unit Process Types”)

The Multi-Function Processing Unit may have multiple Input Pins Input Pins as indicated in the bNrInputs field.

Because a Multi-Function Processing Unit can freely redefine its output Cluster configuration, there is a need for an

output Cluster descriptor. The wClusterDescrID field contains the unique ID of the Cluster descriptor that

characterizes the Cluster that leaves the Processing Unit over its single Output Pin (‘downstream’ connection). For

a detailed description of the Cluster descriptor, see Section 4.3, “Cluster Descriptor”.

The bmAlgorithms field is a bitmap that indicates what types of algorithms are performed inside the Multi-

Function Processing Unit. Multiple bits may be set simultaneously.

The following table outlines the Multi-Function Processing Unit descriptor.

Release 3.0 September 22, 2016 90

Table 4-41: Multi-Function Processing Unit Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 19+p.

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant PROCESSING_UNIT descriptor subtype.

3 bUnitID 1 Number Value uniquely identifying the Unit within
the Audio Function. This value is used in all
requests to address this Unit.

4 wProcessType 2 Constant MULTI_FUNCTION_PROCESS process type.

6 bNrInPins 1 Number Number of Input Pins of this Unit: 1

7 baSourceID(1) 1 Number ID of the Unit or Terminal to which Input Pin
1 of this Processing Unit is connected.

… … … … …

7+(p-1) baSourceID (p) 1 Number ID of the Unit or Terminal to which the last
Input Pin of this Processing Unit is
connected.

7+p wProcessingDescrStr 2 wStrDescrID ID of a class-specific String descriptor,
describing this Processing Unit.

9+p bmControls 4 Bitmap D1..0: Underflow Control.

D3..2: Overflow Control.

D31..4: Reserved.

13+p wClusterDescrID 2 Number Unique ID of the Cluster descriptor for this
Processing Unit.

15+p bmAlgorithms 4 bitmap D0: Algorithm Undefined.

D1: Beam Forming.

D2: Acoustic Echo Cancellation.

D3: Active Noise Cancellation.

D4: Blind Source Separation.

D5: Noise Suppression/Reduction.

D31..6: Reserved.

4.5.2.11 EXTENSION UNIT DESCRIPTOR

The Extension Unit is uniquely identified by the value in the bUnitID field of the Extension Unit descriptor (XUD).

No other Unit or Terminal within the AudioControl interface may have the same ID. This value shall be passed in

the Entity ID field (part of the wIndex field) of each request that is directed to the Extension Unit.

The Extension Unit descriptor provides minimal information about the Extension Unit for a generic driver at least

to notice the presence of vendor-specific components within the Audio Function. The wExtensionCode field may

contain a vendor-specific code that further identifies the Extension Unit. If it is not used, it should be set to zero.

The bNrInPins field contains the number of Input Pins (p) of the Extension Unit. The connectivity of the Input Pins

is described via the baSourceID() array that contains p elements. The index I into the array is one-based and

directly related to the Input Pin numbers. baSourceID(i) contains the ID of the Unit or Terminal to which Input Pin I

is connected. The Cluster descriptors that describe the logical channels that enter the Extension Unit are not

Release 3.0 September 22, 2016 91

repeated here. It is up to the Host software to trace the connections ‘upstream’ to locate the Cluster descriptors

pertaining to the Clusters.

Because an Extension Unit can freely redefine its output Cluster configuration, there is a need for an output Cluster

descriptor. The wClusterDescrID field contains the unique ID of the Cluster descriptor that characterizes the

Cluster that leaves the Extension Unit over its single Output Pin (‘downstream’ connection). For a detailed

description of the Cluster descriptor, see Section 4.3, “Cluster Descriptor”.

An ID of a String descriptor is provided to further describe the Extension Unit.

The following table outlines the Extension Unit descriptor.

Table 4-42: Extension Unit Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 15+p.

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant EXTENSION_UNIT descriptor subtype.

3 bUnitID 1 Number Value uniquely identifying the Unit within
the Audio Function. This value is used in all
requests to address this Unit.

4 wExtensionCode 2 Constant Vendor-specific code identifying the
Extension Unit.

6 bNrInPins 1 Number Number of Input Pins of this Unit: p

7 baSourceID(1) 1 Number ID of the Unit or Terminal to which the first
Input Pin of this Extension Unit is connected.

… … … … …

7+(p-1) baSourceID (p) 1 Number ID of the Unit or Terminal to which the last
Input Pin of this Extension Unit is connected.

7+p wExtensionDescrStr 2 wStrDescrID ID of a class-specific String descriptor,
describing this Extension Unit.

9+p bmControls 4 Bitmap D1..0: Underflow Control.

D3..2: Overflow Control.

D31..4: Reserved.

13+p wClusterDescrID 2 Number Unique ID of the Cluster descriptor for this
Extension Unit.

4.5.2.12 CLOCK SOURCE DESCRIPTOR

The Clock Source Entity is uniquely identified by the value in the bClockID field of the Clock Source Entity

descriptor (CSD). No other Clock Entity, Unit or Terminal within the AudioControl interface may have the same ID.

This value shall be passed in the Entity ID field (part of the wIndex field) of each request that is directed to the

Clock Source Entity.

The bmAttributes field contains a Clock Type bit field (D0) that indicates whether the Clock Source represents an

external clock (D0 = 0b0) or an internal clock (D0=0b1). Further characteristics of the Clock Source can be derived

from the value of the Clock Frequency Control bit pair D1..0 in the bmControls field. Since the Clock Frequency

Control shall always be present, the only allowed values are D1..0 = 0b01 (Read-Only) or D1..0 = 0b11 (Read-

Release 3.0 September 22, 2016 92

Write). The supported clock frequencies can be derived from the Range attribute of the Clock Frequency Control

(fixed rate vs. variable rate). Note that even a Clock Source of Type External can be Read-Write if the Audio

Function has the ability to influence that external clock through means outside of USB. The actual sampling

frequency of the Clock Source can be manipulated through the Clock Frequency request. In addition, the Clock

Source can be queried for the validity of its current sampling clock signal through a Get Clock Validity request.

Bit D1 in the bmAttributes field indicates whether an internal clock is free running (D1 = 0b0) or synchronized to

the Start of Frame (D1 = 0b1). If D0 = 0b0, then D1 shall also be set to 0b0.

The bReferenceTerminal field contains a reference to a Terminal from which the Clock Source is derived. This is

useful for instance when a Clock Source’s clock signal is derived from the input signal on an S/PDIF connector,

which is represented by an Input Terminal. If the Clock Source is free running or derived from USB SOF (not derived

from a Terminal), this field shall be set to zero.

An ID of a String descriptor is provided to further describe the Clock Source Unit.

The following table presents an outline of the Clock Source descriptor.

Table 4-43: Clock Source Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 12.

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant CLOCK_SOURCE descriptor subtype.

3 bClockID 1 Number Value uniquely identifying the Clock Source
Entity within the Audio Function. This value
is used in all requests to address this Entity.

4 bmAttributes 1 Bitmap D0: Clock Type:

 0: External Clock.
1: Internal Clock.

D1: Synchronization Type:

 0: Asynchronous.
1: Clock synchronized to SOF.

D7..2: Reserved.

5 bmControls 4 Bitmap D1..0: Clock Frequency Control.

D3..2: Clock Validity Control.

D31..4: Reserved.

9 bReferenceTerminal 1 Number Terminal ID of the Terminal from which this
Clock Source is derived.

10 wClockSourceStr 2 wStrDescrID ID of a class-specific String descriptor,
describing the Clock Source Entity.

4.5.2.13 CLOCK SELECTOR DESCRIPTOR

The Clock Selector Entity is uniquely identified by the value in the bClockID field of the Clock Selector Entity

descriptor (CXD). No other Clock Entity, Unit or Terminal within the AudioControl interface may have the same ID.

This value shall be passed in the Entity ID field (part of the wIndex field) of each request that is directed to the

Clock Selector Entity.

Release 3.0 September 22, 2016 93

The bNrInPins field contains the number of Clock Input Pins (p) of the Clock Selector Entity. The connectivity of the

Input Pins is described via the baCSourceID() array that contains p elements. The index I into the array is one-

based and directly related to the Clock Input Pin numbers. baCSourceID(i) contains the ID of the Clock Entity to

which Clock Input Pin I is connected.

An ID of a String descriptor is provided to further describe the Clock Selector Entity.

The following table presents an outline of the Clock Selector descriptor.

Table 4-44: Clock Selector Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 11+p.

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant CLOCK_SELECTOR descriptor subtype.

3 bClockID 1 Number Value uniquely identifying the Clock Selector
Entity within the Audio Function. This value
is used in all requests to address this Entity.

4 bNrInPins 1 Number Number of Input Pins of this Unit: p

5 baCSourceID(1) 1 Number ID of the Clock Entity to which the first Clock
Input Pin of this Clock Selector Entity is
connected.

… … … … …

5+(p-1) baCSourceID (p) 1 Number ID of the Clock Entity to which the last Clock
Input Pin of this Clock Selector Entity is
connected.

5+p bmControls 4 Bitmap D1..0: Clock Selector Control.

D31..2: Reserved.

9+p wCSelectorDescrStr 2 wStrDescrID ID of a class-specific String descriptor,
describing the Clock Selector Entity.

4.5.2.14 CLOCK MULTIPLIER DESCRIPTOR

The Clock Multiplier Entity is uniquely identified by the value in the bClockID field of the Clock Multiplier Entity

descriptor (CMD). No other Clock Entity, Unit or Terminal within the AudioControl interface may have the same ID.

This value shall be passed in the Entity ID field (part of the wIndex field) of each request that is directed to the

Clock Multiplier Entity.

The bCSourceID field contains the ID of the Clock Entity to which the Clock Multiplier’s Clock Input Pin is

connected.

An ID of a String descriptor is provided to further describe the Clock Multiplier Entity.

The following table presents an outline of the Clock Multiplier descriptor.

Table 4-45: Clock Multiplier Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 11.

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

Release 3.0 September 22, 2016 94

Offset Field Size Value Description

2 bDescriptorSubtype 1 Constant CLOCK_MULTIPLIER descriptor subtype.

3 bClockID 1 Number Value uniquely identifying the Clock
Multiplier Entity within the Audio Function.
This value is used in all requests to address
this Entity.

4 bCSourceID 1 Number ID of the Clock Entity to which the last Clock
Input Pin of this Clock Selector Entity is
connected.

5 bmControls 4 Bitmap D1..0: Clock Numerator Control.

D3..2: Clock Denominator Control.

D31..4: Reserved.

9 wCMultiplierDescrStr 2 wStrDescrID ID of a class-specific String descriptor,
describing the Clock Multiplier Entity.

4.5.2.15 POWER DOMAIN DESCRIPTOR

The Power Domain descriptor (PDD) provides information to the Host regarding the existence of one or more

Power Domains within the Audio Function and lists the Entities, through their respective Entity ID, that are explicit

members of a particular Power Domain. Only Input Terminals, Output Terminals, Effect Units, Processing Units,

and Extension Units shall be explicit members of a Power Domain.

There is a Power Domain descriptor for each Power Domain in the Audio Function. Therefore, the number of

Power Domain descriptors is an indicator for the number of separately managed Power Domains in the Audio

Function. Each eligible Entity can only be member of a single Power Domain, i.e. Power Domains never overlap.

The Power Domain is uniquely identified by the value in the bPowerDomainID field of the Power Domain

descriptor (PDD). No other Entity within the AudioControl interface may have the same ID. This value shall be

passed in the Entity ID field (part of the wIndex field) of each request that is directed to the Power Domain.

The waRecoveryTime() array contains the approximate recovery time for Power Domain State D1 and D2. The

bNrEntities field contains the number of Entities in this Power Domain. The baEntityID() array contains the Entity

IDs of all the explicit member Entities.

An ID of a String descriptor is provided to further describe the Power Domain.

Table 4-46: Power Domain Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 11+p.

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant POWER_DOMAIN descriptor subtype.

3 bPowerDomainID 1 Number Value uniquely identifying the Power
Domain within the Audio Function. This
value is used in all requests to address this
Power Domain.

Release 3.0 September 22, 2016 95

4 waRecoveryTime(1) 2 Number Time to recover from D1 to D0. Expressed in

50 s increments. For example, a typical
value for this is 600, which indicates a
recovery time of 30 ms.

6 waRecoveryTime(2) 2 Number Time to recover from D2 to D0. Expressed in

50 s increments. For example, a typical
value for this is 6000, which indicates a
recovery time of 300 ms.

8 bNrEntities 1 Number Number of Entities belonging to this Power
Domain: p.

9 baEntityID(1) 1 Number ID of the first Entity that belongs to this
Power Domain.

… … … …

8+p baEntityID(p) 1 Number ID of the last Entity that belongs to this
Power Domain.

9+p wPDomainDescrStr 2 wStrDescrID ID of a class-specific String descriptor,
describing this Power Domain.

4.6 AUDIOCONTROL ENDPOINT DESCRIPTORS

The following sections describe all possible endpoint-related descriptors for the AudioControl interface.

4.6.1 AC CONTROL ENDPOINT DESCRIPTORS

4.6.1.1 STANDARD AC CONTROL ENDPOINT DESCRIPTOR

The AudioControl interface uses the default endpoint 0. Therefore, there is no dedicated standard control

endpoint descriptor.

4.6.1.2 CLASS-SPECIFIC AC CONTROL ENDPOINT DESCRIPTOR

There is no dedicated class-specific control endpoint descriptor.

4.6.2 AC INTERRUPT ENDPOINT DESCRIPTORS

4.6.2.1 STANDARD AC INTERRUPT ENDPOINT DESCRIPTOR

The interrupt endpoint descriptor is identical to the standard endpoint descriptor defined in the USB Specification.

Its fields are set to reflect the interrupt type of the endpoint. This endpoint is optional.

The following table outlines the standard AC Interrupt Endpoint descriptor.

Table 4-47: Standard AC Interrupt Endpoint Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 7

1 bDescriptorType 1 Constant ENDPOINT descriptor type

Release 3.0 September 22, 2016 96

Offset Field Size Value Description

2 bEndpointAddress 1 Endpoint The address of the endpoint on the USB
device described by this descriptor. The
address is encoded as follows:

D7: Direction. 1 = IN endpoint.

D6..4: Reserved.

D3..0: The endpoint number, determined
by the designer.

3 bmAttributes 1 Bitmap D1..0: Transfer Type

11 = Interrupt.

All other bits are reserved.

4 wMaxPacketSize 2 Number Maximum packet size this endpoint is
capable of sending or receiving when this
configuration is selected. Used here to pass
6-byte interrupt information.

6 bInterval 1 Number Interval for polling the Interrupt endpoint.

4.6.2.2 CLASS-SPECIFIC AC INTERRUPT ENDPOINT DESCRIPTOR

There is no class-specific AudioControl interrupt endpoint descriptor.

4.7 AUDIOSTREAMING INTERFACE DESCRIPTORS

The AudioStreaming (AS) interface descriptors contain all relevant information to characterize the AudioStreaming

interface in full.

4.7.1 STANDARD AS INTERFACE DESCRIPTOR

The standard AS interface descriptor is identical to the standard interface descriptor defined in the USB

Specification, except that some fields now have dedicated values.

Table 4-48: Standard AS Interface Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 9.

1 bDescriptorType 1 Constant INTERFACE descriptor type.

2 bInterfaceNumber 1 Number Number of the interface. A zero-based value
identifying the index in the array of
concurrent interfaces supported by this
configuration.

3 bAlternateSetting 1 Number Value used to select an Alternate Setting for
the interface identified in the prior field.

4 bNumEndpoints 1 Number Number of endpoints used by this interface
(excluding endpoint 0). Shall be either 0 (no
data endpoint), 1 (data endpoint) or 2 (data
and explicit feedback endpoint).

5 bInterfaceClass 1 Class AUDIO Audio Interface Class code (assigned
by the USB). See Appendix A.4, “Audio
Interface Class Code”

Release 3.0 September 22, 2016 97

Offset Field Size Value Description

6 bInterfaceSubClass 1 Subclass AUDIO_STREAMING Audio Interface
Subclass code. Assigned by this specification.
See Appendix A.5, “Audio Interface Subclass
Codes.”

7 bInterfaceProtocol 1 Protocol IP_VERSION_03_00 Interface Protocol code.
Indicates the current version of the
specification. See Appendix A.6, “Audio
Interface Protocol Codes”

8 iInterface 1 Index Index of a String descriptor that describes
this interface.

4.7.2 CLASS-SPECIFIC AS INTERFACE DESCRIPTOR

The bTerminalLink field contains the unique Terminal ID of the Input or Output Terminal to which this interface is

associated.

The wClusterDescrID field contains the unique ID of the cluster descriptor that characterizes the physical cluster

associated with an Alternate Setting of this interface. For a detailed description of the cluster descriptor, see

Section 4.3, “Cluster Descriptor”.

The remaining fields in this descriptor are described in detail in a separate document, USB Audio Data Formats that

is considered part of this specification.

An Alternate Setting of an interface is allowed to support multiple Audio Data Formats at the same time, even if

they belong to different Format Types. The bmFormats bitmap has a bit set for each Audio Data Format that can

be used when communicating with this Alternate Setting of the interface. It is up to the implementation to be able

to accurately distinguish among the different Audio Data Formats and invoke the correct encoding or decoding

processes for the current Audio Data Format. Alternatively, support for the different Format Types and/or Audio

Data Formats can be separated out into different Alternate Settings if the interface is not able to accurately

distinguish among the different Format Types and/or Audio Data Formats.

Table 4-49: Class-Specific AS Interface Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes: 23.

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant AS_GENERAL descriptor subtype.

3 bTerminalLink 1 Number The Terminal ID of the Terminal to which
this interface is connected.

4 bmControls 4 Bitmap D1..0: Active Alternate Setting Control.

D3..2: Valid Alternate Settings Control.

D5..4: Audio Data Format Control.

D31..6: Reserved.

8 wClusterDescrID 2 Number ID of the cluster descriptor of the AS
Interface.

Release 3.0 September 22, 2016 98

Offset Field Size Value Description

10 bmFormats 8 Bitmap The Audio Data Format(s) that can be used
to communicate with this interface. See the
USB Audio Data Formats document for
further details.

18 bSubslotSize 1 Number The number of bytes occupied by one audio
subslot.

19 bBitResolution 1 Number The number of effectively used bits from the
available bits in an audio subslot.

20 bmAuxProtocols 2 Bitmap Bitmap, indicating which Auxiliary Protocols
are required.

22 bControlSize 1 Number Size of the Control Channel Words, in bytes.

4.7.3 CLASS-SPECIFIC AS VALID FREQUENCY RANGE DESCRIPTOR

The AS Valid Frequency Range descriptor provides information to the Host about what sampling frequency ranges

are supported by this Alternate Setting of the AudioStreaming interface. An Audio Function shall provide this

descriptor to indicate that this Alternate Setting of the interface is only valid if the selected sampling frequency is

in the range [dMin..dMax]. The values of dMin and dMax are expressed in Hz. If the Alternate Setting of the

interface is valid for any available clock frequency supported by the Audio Function, the descriptor may be

omitted. Multiple instances of this descriptor are allowed in the same Alternate Setting of the AudioStreaming

interface to describe disjoint frequency ranges.

Table 4-50: Class-Specific AS Valid Frequency Range Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes: 11

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant AS_VALID_FREQ_RANGE descriptor subtype.

3 dMin 4 Number The minimum sampling frequency at which
this Alternate Setting of the AudioStreaming
interface is valid.

7 dMax 4 Number The maximum sampling frequency at which
this Alternate Setting of the AudioStreaming
interface is valid.

4.8 AUDIOSTREAMING ENDPOINT DESCRIPTORS

The following sections describe all possible endpoint-related descriptors for the AudioStreaming interface.

4.8.1 AS ISOCHRONOUS AUDIO DATA ENDPOINT DESCRIPTORS

The standard and class-specific audio data endpoint descriptors provide pertinent information on how audio data

streams are communicated to the Audio Function. In addition, specific endpoint capabilities and properties are

reported.

Release 3.0 September 22, 2016 99

4.8.1.1 STANDARD AS ISOCHRONOUS AUDIO DATA ENDPOINT DESCRIPTOR

The standard AS isochronous audio data endpoint descriptor is identical to the standard endpoint descriptor

defined in the USB Specification. D7 of the bEndpointAddress field indicates whether the endpoint is an audio

source (D7 = 0b1) or an audio sink (D7 = 0b0). The bmAttributes Field bits are set to reflect the isochronous type of

the endpoint. The synchronization type is indicated by D3..2 and shall be set to Asynchronous, Adaptive or

Synchronous. For further details, refer to the USB Specification.

Table 4-51: Standard AS Isochronous Audio Data Endpoint Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 7

1 bDescriptorType 1 Constant ENDPOINT descriptor type

2 bEndpointAddress 1 Endpoint The address of the endpoint on the USB
device described by this descriptor. The
address is encoded as follows:

D3..0: The endpoint number, determined
by the designer.

D6..4: Reserved.

D7: Direction:

0 = OUT endpoint.

1 = IN endpoint.

3 bmAttributes 1 Bitmap D1..0: Transfer type:

01 = Isochronous.

D3..2: Synchronization Type:

01 = Asynchronous.

10 = Adaptive.

11 = Synchronous.

D5..4: Usage Type:

00 = Data endpoint

 or

10 = Implicit feedback Data endpoint.

All other bits are reserved.

4 wMaxPacketSize 2 Number (Speed-dependent.) Indicates the maximum
packet size and potentially any bursting on
this endpoint.

This is determined by the audio bandwidth
constraints of the endpoint.

6 bInterval 1 Number Interval for polling endpoint for data
transfers.

Note: For SuperSpeed and SuperSpeedPlus endpoints, the SuperSpeed Endpoint Companion and

SuperSpeedPlus Endpoint Companion descriptors would follow the standard endpoint descriptor. See

the USB 3.1 specification for details.

4.8.1.2 CLASS-SPECIFIC AS ISOCHRONOUS AUDIO DATA ENDPOINT DESCRIPTOR

The bLockDelayUnits and wLockDelay fields are used to indicate to the Host how long it takes for the clock

recovery circuitry of this endpoint to lock and reliably produce or consume the audio data stream. This information

Release 3.0 September 22, 2016 100

can be used by the Host to take appropriate action so that no meaningful data gets lost during the locking period.

(For instance, sending digital silence during lock period)

Depending on the implementation, the locking period can be a fixed amount of time or can be proportional to the

sampling frequency. In this case, it usually takes a fixed amount of samples to become locked. To accommodate

both cases, the bLockDelayUnits field indicates whether the wLockDelay field is expressed in time (milliseconds)

or number of samples.

Note: Some implementations may use locking strategies that do not have either a fixed time or a fixed

number of samples before locking. In this case, a worst case value can be reported back to the Host.

The bLockDelayUnits and wLockDelay fields are only applicable for synchronous and adaptive endpoints. For

asynchronous endpoints, the clock is generated internally in the Audio Function and is completely independent. In

this case, bLockDelayUnits and wLockDelay shall be set to zero.

Table 4-52: Class-Specific AS Isochronous Audio Data Endpoint Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 10.

1 bDescriptorType 1 Constant CS_ENDPOINT descriptor type.

2 bDescriptorSubtype 1 Constant EP_GENERAL descriptor subtype.

3 bmControls 4 Bitmap D1..0: Pitch Control.

D3..2: Data Overrun Control.

D5..4: Data Underrun Control.

D31..6: Reserved.

7 bLockDelayUnits 1 Number Indicates the units used for the wLockDelay
field:

0: Undefined.

1: Milliseconds.

2: Decoded PCM samples.

3..255: Reserved.

8 wLockDelay 2 Number Indicates the time it takes this endpoint to
reliably lock its internal clock recovery
circuitry. Units used depend on the value of
the bLockDelayUnits field.

4.8.2 AS ISOCHRONOUS FEEDBACK ENDPOINT DESCRIPTOR

This descriptor is present only when one or more isochronous audio data endpoints of the adaptive source type or

the asynchronous sink type are implemented.

4.8.2.1 STANDARD AS ISOCHRONOUS FEEDBACK ENDPOINT DESCRIPTOR

The isochronous feedback endpoint descriptor is identical to the standard endpoint descriptor defined in the USB

Specification. The bmAttributes field bits are set to reflect the isochronous type and synchronization type of the

endpoint.

Release 3.0 September 22, 2016 101

Table 4-53: Standard AS Isochronous Feedback Endpoint Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 7

1 bDescriptorType 1 Constant ENDPOINT descriptor type.

2 bEndpointAddress 1 Endpoint The address of the endpoint on the USB
device described by this descriptor. The
address is encoded as follows:

D3..0: The endpoint number, determined
by the designer.

D6..4: Reserved.

D7: Direction:

0 = OUT endpoint.

1 = IN endpoint.

3 bmAttributes 1 Bitmap D1..0: Transfer type:

01 = Isochronous.

D3..2: Synchronization Type:

00 = No Synchronization.

D5..4: Usage Type:

01 = Feedback endpoint.

All other bits are reserved.

4 wMaxPacketSize 2 Number Maximum packet size this endpoint is
capable of sending or receiving when this
configuration is selected.

6 bInterval 1 Number Interval for polling endpoint for data
transfers.

Note: For SuperSpeed and SuperSpeedPlus endpoints, the SuperSpeed Endpoint Companion and

SuperSpeedPlus Endpoint Companion descriptors would follow the standard endpoint descriptor. See

the USB 3.1 specification for details.

4.8.2.2 CLASS-SPECIFIC AS ISOCHRONOUS FEEDBACK ENDPOINT DESCRIPTOR

There is no class-specific AS isochronous feedback endpoint descriptor.

4.9 CLASS-SPECIFIC STRING DESCRIPTORS

This specification defines a new type of class-specific String descriptor. Class-specific String descriptors are

retrieved through a class-specific Get String request. See Section 5.2.3.2, “Class-specific String Request” for details.

All class-specific strings in the Audio Function shall use this new methodology. Strings that are part of the standard

descriptor set shall use the standard string methodology.

Class-specific strings can be dynamic in nature, i.e. change during normal operation and inform the Host of such a

change by generating an interrupt with source type set to STRING.

The wLength field contains the length of the class-specific String descriptor. Class-specific strings can be up to

65,528 bytes in length.

The bDescriptorType field shall be set to CS_STRING.

Release 3.0 September 22, 2016 102

The bDescriptorSubtype field indicates the descriptor subtype for the String descriptor. (Currently, only the value

SUBTYPE_UNDEFINED is defined.)

The wStrDescrID field contains a unique identifier for the class-specific String descriptor in the range [256..65,535].

The iLangID field contains a zero-based index into the LANGID code array as returned by the device. A device can

at most support 126 different languages since the LANGID code array is restricted to 254 bytes and each LANGID

code takes up 2 bytes. The range of the bLangID is therefore from 0 to 125 maximum.

The String field contains the actual Unicode encoded string as outlined in the USB Specification.

Table 4-54: Class-specific String Descriptor

Offset Field Size Value Description

0 wLength 2 Number Size of the String descriptor in bytes: 7+N.

2 bDescriptorType 1 Number CS_STRING. Type of this descriptor.

3 bDescriptorSubtype 1 Constant Descriptor Subtype.

4 wStrDescrID 2 Number Unique ID for this class-specific String
descriptor.

6 iLangID 1 Number Zero-based index into the LANGID code array
as returned by the device.

7 String N Number Unicode encoded string. Follows the
definitions outlined in the USB Specification.

Release 3.0 September 22, 2016 103

5 REQUESTS

5.1 STANDARD REQUESTS

The Audio Device Class supports the standard requests described in Section 9, “USB Device Framework,” of the

USB Specification. The Audio Device Class places no specific requirements on the values for the standard requests.

5.2 CLASS-SPECIFIC REQUESTS

Class-specific requests are used to set and get audio related Controls. These Controls fall into two main groups:

those that manipulate the Audio Function’s Controls, such as volume, tone, selector position, etc. and those that

influence data transfer over an isochronous endpoint, such as the current sampling frequency.

 AudioControl Requests. Control of an Audio Function is performed through the manipulation of the attributes

of individual Controls that are embedded in the Entities of the Audio Function. The class-specific AudioControl

interface descriptor contains a collection of Entity descriptors, each indicating which Controls are present in

the Entity. AudioControl requests are always directed to the single AudioControl interface of the Audio

Function. The request contains enough information (Entity ID, Control Selector, and Channel Number) for the

Audio Function to decide to where a specific request shall be routed. The same request layout can be used for

vendor-specific requests to Extension Units. However, they are not covered by this specification.

 AudioStreaming Requests. Control of the class-specific behavior of an AudioStreaming interface is performed

through manipulation of either interface Controls or endpoint Controls. These can be either class-specific (as

defined in this specification) or vendor-specific. In either case, the same request layout can be used.

AudioStreaming requests are directed to the recipient where the Control resides. This can be either the

interface or its associated isochronous endpoint.

The Audio Device Class supports three additional class-specific requests:

 Memory Requests. Every addressable Entity in the Audio Function (Clock Entity, Terminal, Unit, Power

Domain, Interface, and Endpoint) can expose a memory-mapped interface that provides the means to

generically manipulate the Entity. Vendor-specific Control implementations could be based on this type of

request.

 String Requests. This type of request provides a class-specific method to retrieve String descriptors from the

Audio Function. This request is introduced to overcome the USB core specification limitation that only

provides for 255 device-wide String descriptors.

 Descriptor Requests. This type of request provides a class-specific method to retrieve descriptors from the

Audio Function outside the standard descriptor retrieval during enumeration. This request is introduced to

overcome the USB core specification limitation that only provides for descriptors that are a maximum of 256

bytes long. It also enables dynamically changing descriptors (after enumeration).

In principle, all Controls and their associated requests are optional. If an Audio Function does not support a certain

request, it shall indicate this by stalling the control pipe when that request is issued to the function. However, if a

certain Set request is supported, the associated Get request shall also be supported. Get requests may be

supported without the associated Set request being supported. If interrupts are supported, then all necessary Get

requests shall be implemented that are required to retrieve the appropriate information from the Audio Function

in response to these interrupts.

Release 3.0 September 22, 2016 104

The remainder of this section describes the class-specific requests and their characteristics used to manipulate the

incorporated Controls, memory locations, class-specific strings and descriptors. Unless explicitly stated otherwise,

all Controls are optional and shall be Read/Write, if present.

5.2.1 AUDIOCONTROL REQUESTS

The following sections describe the possible requests that can be used to manipulate the Audio Controls an Audio

Function exposes through its Entities. The same layout of the parameter blocks is used for both the Set and Get

requests.

5.2.1.1 CONTROL ATTRIBUTES

Each Control within an Entity can have one or more attributes associated with it. Currently defined attributes for a

Control are its:

 Current setting attribute (CUR)

 Range attribute (RANGE)

 Interrupt Enable attribute (INTEN)

The CUR attribute is used to manipulate the current actual setting of a Control. The RANGE attribute provides

information about the limitations the Control imposes on the allowed settings of the CUR attribute. The RANGE

attribute actually consists of an array of sub-attributes. The sub-attributes are Minimum (MIN), Maximum (MAX),

and Resolution (RES). They are always manipulated in triplets of the form [MIN, MAX, RES] and cannot be accessed

or modified individually. The RANGE attribute supports an array of these triplets so that discontinuous multiple

subranges of a Control can be accurately reported. The first element in the array contains the number of subranges

the Control supports. Subsequent triplet elements in the array correspond to each of the subranges. The

subranges shall be ordered in ascending order (from lower values to higher values). Individual subranges cannot

overlap (i.e. the MAX value of the previous subrange cannot be equal to the MIN value of the next subrange). If a

subrange consists of only a single value, the corresponding triplet shall contain that value for both its MIN and

MAX sub-attribute and the RES sub-attribute shall be set to zero.

As an example, consider a (hypothetical) Volume Control that can take the following values for its CUR attribute:

 - dB

 -70 dB to -40 dB in steps of 3 dB

 -40 dB to -20 dB in steps of 2 dB

 -20 dB to 0 dB in steps of 1 dB

One possible layout of the RANGE attribute is then:

RANGE(0) = 3

RANGE(1) = [-70, -40, 3]

RANGE(2) = [-38, -20, 2]

RANGE(3) = [-19, 0, 1]

Another way of representing the same Control is as follows:

RANGE(0) = 3

RANGE(1) = [-70, -43, 3]

RANGE(2) = [-40, -22, 2]

RANGE(3) = [-20, 0, 1]

Release 3.0 September 22, 2016 105

It is left to the designer to choose a suitable representation.

The Interrupt Enable attribute is used to manipulate the Control’s ability to generate an interrupt when any of its

other attributes change other than through Host manipulation. The Interrupt Enable attribute shall be supported

for all Controls that are able to generate an interrupt. When supported, the Interrupt Enable attribute is always

Read-Write and therefore, both the Get and Set request shall be supported. The Interrupt Enable attribute can

take only two values: 0 (False, Disabled) or 1 (True, Enabled). All Interrupt Enable attributes shall have a default

value of 1 (Enabled).

5.2.1.2 CONTROL REQUEST LAYOUT

The Audio Device Class-defined request layout closely follows the standard request layout as defined in the USB

Specification. The request is used to set or get an attribute of a Control inside an Entity of the Audio Function. The

following table details the request layout.

Table 5-1: Request Layout

bmRequest
Type

bRequest wValue wIndex wLength Data

00100001B
10100001B

CUR
RANGE
INTEN

CS
and

CN or MCN

Entity ID
and

Interface

Length of
parameter block

Parameter block

00100010B
10100010B

Zero
and

Endpoint

Bit D7 of the bmRequestType field specifies whether this is a Set request (D7 = 0b0) or a Get request (D7 = 0b1). It

is a class-specific request (D6..5 = 0b01), directed to either an interface (AudioControl or AudioStreaming) of the

Audio Function (D4..0 = 0b00001) or the isochronous endpoint of an AudioStreaming interface (D4..0 = 0b00010).

The bRequest field contains a constant, identifying which attribute of the addressed Control is to be manipulated.

Possible attributes for a Control are its:

 Current setting attribute (CUR)

 Range attribute (RANGE)

 Interrupt Enable attribute (INTEN)

If the addressed Control does not support modification of a certain attribute, the control pipe shall indicate a stall

when an attempt is made to modify that attribute. In most cases, only the CUR attribute will be supported for the

Set request. However, this specification does not prevent a designer from making the RANGE attribute

programmable or having the Audio Function adjust a RANGE attribute due to an external event. For the list of

Request constants, refer to Appendix A.22, “Audio Class-Specific Request Codes.”

Note: Support for the INTEN attribute is not repeated for each Control in the following sections. It is assumed

that support is provided as appropriate for the Control in a particular Audio Function implementation.

Issuing a Get INTEN Request will result in a stall on the control pipe when the INTEN attribute is not

supported for that Control.

As a general rule, when an attribute value is set, a Control will automatically adjust the passed value to the closest

available valid value. This value can be retrieved through a subsequent Get Control request.

Release 3.0 September 22, 2016 106

The wValue field specifies the Control Selector (CS) in the high byte and the Channel Number (CN) in the low byte.

The Control Selector indicates which type of Control this request is manipulating. The Channel Number (CN)

indicates which logical channel of the Cluster is to be influenced. If a Control is channel independent, then the

Control is considered to be a master Control and the virtual channel zero is used to address it (CN = 0). If the

request specifies an unknown or unsupported CS or CN to that Unit, the control pipe shall indicate a stall.

There is an exception to the above. If the Mixer Unit Control request wants to address a Mixer Control, it specifies

CS = MU_MIXER_CONTROL as the Control Selector in the high byte and the Mixer Control Number (MCN) in the

low byte.

When the request addresses an Entity in an interface (bmRequestType = 0b00100001 or 10100001), the wIndex

field specifies the interface in the low byte and the Entity ID (Clock Entity ID, Unit ID, Terminal ID, or Power Domain

ID). For addressing the interface itself, an Entity ID of zero shall be specified in the high byte.

When the request addresses an endpoint (bmRequestType = 0b00100010 or 10100010), the wIndex field specifies

the endpoint to be addressed in the low byte and zero in the high byte.

The values in wIndex shall be appropriate to the recipient. Only existing Entities in the Audio Function or in the

AudioStreaming interfaces can be addressed and only appropriate interface or endpoint numbers may be used. If

the request specifies an unknown or non-Entity ID or an unknown interface or endpoint number, the control pipe

shall indicate a stall.

The actual parameter(s) for the Set request are passed in the data stage of the control transfer. The length of the

parameter block is indicated in the wLength field of the request. The layout of the parameter block is qualified by

both the bRequest and wIndex fields. Refer to the following sections for a detailed description of the parameter

block layout for all possible Entities.

The actual parameter(s) for the Get request are returned in the data stage of the control transfer. The length of

the parameter block to return is indicated in the wLength field of the request. If the parameter block is longer than

what is indicated in the wLength field, only the initial bytes of the parameter block are returned. If the parameter

block is shorter than what is indicated in the wLength field, the device indicates the end of the control transfer by

sending a short packet when further data is requested. The layout of the parameter block is qualified by both the

bRequest and wIndex fields. Refer to the following sections for a detailed description of the parameter block

layout for all possible Entities.

5.2.1.3 CONTROL REQUEST PARAMETER BLOCK LAYOUT

With a few exceptions, almost all Control requests manipulate a single Control parameter during a Set or Get

request. For those requests, the possible parameter block layouts can be divided into three categories, depending

on the byte size of the Control’s CUR attribute. A CUR attribute’s size can be either a single byte, a word (2 bytes)

or a double word (4 bytes). The following paragraphs specify the layout of the CUR and RANGE parameter blocks

for the three categories. The layout of the parameter block for the INTEN attribute is the same for all Controls and

is specified in Section 5.2.1.3.4, “INTEN Parameter Block”.

For those requests that use a deviating parameter block layout, the actual layout is explicitly defined in the

relevant sections.

5.2.1.3.1 LAYOUT 1 PARAMETER BLOCK

The parameter block for a 1-byte sized CUR attribute of a Control is as follows:

Release 3.0 September 22, 2016 107

Table 5-2: 1-byte Control CUR Parameter Block

wLength 1

Offset Field Size Value Description

0 bCUR 1 Number The setting for the CUR attribute of the
addressed Control

The associated parameter block for the RANGE attribute of that Control is as follows:

Table 5-3: 1-byte Control RANGE Parameter Block

wLength 2+3*n

Offset Field Size Value Description

0 wNumSubRanges 2 Number The number of subranges of the addressed
Control: n

2 bMIN(1) 1 Number The setting for the MIN attribute of the first
subrange of the addressed Control

3 bMAX(1) 1 Number The setting for the MAX attribute of the first
subrange of the addressed Control

4 bRES(1) 1 Number The setting for the RES attribute of the first
subrange of the addressed Control

… … … … …

2+3*(n-1) bMIN(n) 1 Number The setting for the MIN attribute of the last
subrange of the addressed Control

3+3*(n-1) bMAX(n) 1 Number The setting for the MAX attribute of the last
subrange of the addressed Control

4+3*(n-1) bRES(n) 1 Number The setting for the RES attribute of the last
subrange of the addressed Control

5.2.1.3.2 LAYOUT 2 PARAMETER BLOCK

The parameter block for a 2-byte sized CUR attribute of a Control is as follows:

Table 5-4: 2-byte Control CUR Parameter Block

wLength 2

Offset Field Size Value Description

0 wCUR 2 Number The setting for the CUR attribute of the
addressed Control

The associated parameter block for the RANGE attribute of that Control is as follows:

Table 5-5: 2-byte Control RANGE Parameter Block

wLength 2+6*n

Offset Field Size Value Description

0 wNumSubRanges 2 Number The number of subranges of the addressed
Control: n

Release 3.0 September 22, 2016 108

2 wMIN(1) 2 Number The setting for the MIN attribute of the first
subrange of the addressed Control

4 wMAX(1) 2 Number The setting for the MAX attribute of the first
subrange of the addressed Control

6 wRES(1) 2 Number The setting for the RES attribute of the first
subrange of the addressed Control

… … … … …

2+6*(n-1) wMIN(n) 2 Number The setting for the MIN attribute of the last
subrange of the addressed Control

4+6*(n-1) wMAX(n) 2 Number The setting for the MAX attribute of the last
subrange of the addressed Control

6+6*(n-1) wRES(n) 2 Number The setting for the RES attribute of the last
subrange of the addressed Control

5.2.1.3.3 LAYOUT 3 PARAMETER BLOCK

The parameter block for a 4-byte sized CUR attribute of a Control is as follows:

Table 5-6: 4-byte Control CUR Parameter Block

wLength 4

Offset Field Size Value Description

0 dCUR 4 Number The setting for the CUR attribute of the
addressed Control

The associated parameter block for the RANGE attribute of that Control is as follows:

Table 5-7: 4-byte Control RANGE Parameter Block

wLength 2+12*n

Offset Field Size Value Description

0 wNumSubRanges 2 Number The number of subranges of the addressed
Control: n

2 dMIN (1) 4 Number The setting for the MIN attribute of the first
subrange of the addressed Control

6 dMAX (1) 4 Number The setting for the MAX attribute of the first
subrange of the addressed Control

10 dRES (1) 4 Number The setting for the RES attribute of the first
subrange of the addressed Control

… … … … …

2+12*(n-1) dMIN(n) 4 Number The setting for the MIN attribute of the last
subrange of the addressed Control

6+12*(n-1) dMAX(n) 4 Number The setting for the MAX attribute of the last
subrange of the addressed Control

10+12*(n-1) dRES(n) 4 Number The setting for the RES attribute of the last
subrange of the addressed Control

Release 3.0 September 22, 2016 109

5.2.1.3.4 INTEN PARAMETER BLOCK

The parameter block for the INTEN attribute of a Control is as follows:

Table 5-8: INTEN Parameter Block

wLength 1

Offset Field Size Value Description

0 bINTEN 1 Boolean The setting for the INTEN attribute of the
addressed Control. Only allowed values are 0
(False) and 1 (True).

5.2.1.4 COMMON CONTROLS

The following sections describe a number of Controls that can appear in several Entity types. They are described

here only once and a reference to these Control descriptions is provided for all those Entities that can incorporate

any of these Controls.

5.2.1.4.1 ENABLE CONTROL

The Enable Control is used to either enable the functionality of an Entity or bypass the Entity entirely. In the latter

case, the input Cluster is routed unaltered to the output of the Entity. The Enable Control shall have only the CUR

attribute. The value of an Enable Control CUR attribute can be either TRUE or FALSE.

The Control Selector field shall be set to XX_ENABLE_CONTROL (where XX shall be replaced by the appropriate

two-letter abbreviation for the particular Entity) and the Channel Number field shall be set to zero (master

Control).

The parameter block for this Control request uses Layout 1 (See Section 5.2.1.3.1, “Layout 1 Parameter Block.”)

5.2.1.4.2 UNDERFLOW CONTROL

The Underflow Control is used to indicate the occurrence of a calculation underflow condition within an Entity

since the last Get Underflow request. Calculation underflow occurs when an attempt is made to assign a negative

value to an unsigned variable. If implemented, this Control shall be Read-Only. Responding to the Get request

returns the CUR attribute, and then clears its value. An Underflow Control shall have only the CUR attribute. The

value of an Underflow Control CUR attribute shall be either TRUE (underflow condition occurred) or FALSE

(normal).

The Control Selector field shall be set to XX_UNDERFLOW_CONTROL (where XX shall be replaced by the

appropriate two-letter abbreviation for the particular Entity) and the Channel Number field indicates the desired

Channel.

The parameter block for this Control request uses Layout 1 (See Section 5.2.1.3.1, “Layout 1 Parameter Block.”)

5.2.1.4.3 OVERFLOW CONTROL

The Overflow Control is used to indicate the occurrence of a calculation overflow condition within an Entity since

the last Get Overflow request. Calculation overflow occurs when a value is too positive or too negative to be

represented after a signed calculation and when it is too positive after an unsigned calculation. If implemented,

this Control shall be Read-Only. Responding to the Get request returns the CUR attribute, and then clears its value.

An Overflow Control shall have only the CUR attribute. The value of an Overflow Control CUR attribute shall be

either TRUE (overflow condition occurred) or FALSE (normal).

Release 3.0 September 22, 2016 110

The Control Selector field shall be set to XX_OVERFLOW_CONTROL (where XX shall be replaced by the appropriate

two-letter abbreviation for the particular Entity) and the Channel Number field indicates the desired Channel.

The parameter block for this Control request uses Layout 1 (See Section 5.2.1.3.1, “Layout 1 Parameter Block.”)

5.2.1.4.4 POWER DOMAIN CONTROL

This Control shall be supported as Read-Write whenever the Audio Function advertises the existence of at least

one Power Domain through the presence of at least one Power Domain descriptor. (It is therefore not necessary to

advertise the existence of the Control via the regular bmControls mechanism.) Otherwise, it shall not be

supported.

The Power Domain Control is used to selectively bring parts of the Audio Function (a Power Domain) into different

Power Domain States. The Power Domain Control is effectively an array of individual Controls, one for each

defined Power Domain. There shall be a Control present for each Power Domain and each Control shall support

the CUR attribute. The RANGE(MIN, MAX, RES) attributes shall not be supported. The CUR attribute can only have

positive values ranging from 0 (0x00) to 2 (0x02), indicating Power Domain State D0 to D2.

The Control Selector field shall be set to AC_POWER_DOMAIN_CONTROL and the Channel Number field shall be

set to zero (master Control). The Entity ID field shall be set to the Power Domain ID of the desired Power Domain.

The parameter block for this Control request uses Layout 1 (See Section 5.2.1.3.1, “Layout 1 Parameter Block.”)

5.2.1.5 INTERFACE CONTROL REQUESTS

These requests are used to manipulate the Controls inside an AudioControl interface of the Audio Function. The

exact layout of the request is defined in Section 5.2.1.3, “Control Request Parameter Block Layout.”

The following paragraphs present a detailed description of all possible Controls an AudioControl Interface can

incorporate. For each Control, the supported attributes and their value ranges are specified. Also, the appropriate

Control Selector value and the layout type of the parameter blocks are listed. The Control Selector codes are

defined in Appendix A.23.1, “AudioControl Interface Control Selectors.”

5.2.1.5.1 LATENCY CONTROL

An Audio Function shall either not support this Control (D1..0 = 0b00 in the bmControls field of the class-specific

AudioControl Interface descriptor) or support this Read-Only Control for every Terminal and Unit within the Audio

Function (D1..0 = 0b01 in the bmControls field of the class-specific AudioControl Interface descriptor). Terminal

latencies shall include all latencies incurred by A/D or D/A converters, encoders, decoders, etc.

Note: The presence of the Latency Controls is advertised in the class-specific AudioControl Interface

descriptor and not repeated in every Terminal and Unit descriptor. Its functionality is described here,

although the AudioControl interface by itself does not contain a Latency Control.

The Latency Control is used to accurately report the latency, expressed in nanoseconds, incurred by the addressed

Entity. If implemented, this Control shall be Read-Only. A Latency Control shall have only the CUR attribute. The

settings for the CUR attribute can range from 0 ns (0x00000000) to 4,294,967,295 ns (0xFFFFFFFF) in steps of 1 ns

(0x00000001).

The Control Selector field shall be set to XX_LATENCY_CONTROL (where XX shall be replaced by the appropriate

two-letter abbreviation for the particular Entity) and the Channel Number field shall be set to zero (master

Control).

Release 3.0 September 22, 2016 111

The parameter block for this Control request uses Layout 3 (See Section 5.2.1.3.3, “Layout 3 Parameter Block.”)

5.2.1.6 TERMINAL CONTROL REQUEST

This request is used to manipulate the Controls inside a Terminal of the Audio Function. The exact layout of the

request is defined in Section 5.2.1.3, “Control Request Parameter Block Layout.”

The following paragraphs present a detailed description of all possible Controls a Terminal can incorporate. For

each Control, the supported attributes and their value ranges are specified. Also, the appropriate Control Selector

value and the layout type of the parameter blocks are listed. The Control Selector codes are defined in Appendix

A.23.5, “Terminal Control Selectors.”

5.2.1.6.1 INSERTION CONTROL

The Insertion Control is used to examine the insertion state of Connectors that are associated with the Terminal. If

implemented, this Control shall be Read-Only. An Insertion Control shall have only the CUR attribute. The CUR

attribute returns the bmaConInserted field that contains a bitmap where each bit represents the insertion state of

one of the Connectors, associated with the Terminal. For this purpose, Connectors are identified by their ordinal

number. If bit Di-1 is set, then Connector(i) is inserted. If bit Di-1 is reset, then Connector(i) is not inserted. Note that

bit Di-1 only has meaning when bit D2 in the corresponding bmaConAttributes(i) field of the Connectors descriptor

is set, indicating that Connector(i) is able to report meaningful insertion/removal states. For all Connectors,

associated with the Terminal, that are not able to report insertion/removal state, the corresponding bit in the

returned bmaConInserted bitmap shall always be set to zero. Likewise, all unused padding bits in the

bmConInserted bitmap shall always be set to zero. The bSize field indicates the length in bytes of the

bmConInserted field.

Note: The Audio Function is responsible to perform insertion detection and perform proper de-bounce so that

only stable insertion and removal events are reported to the Host.

The Control Selector field shall be set to TE_INSERTION_CONTROL and the Channel Number field shall be set to

zero (master Control).

The parameter block for the CUR attribute of the Insertion Control is as follows:

Table 5-9: Insertion Control CUR Parameter Block

wLength 1+n

Offset Field Size Value Description

0 bSize 1 Number Indicates the number of bytes in the
bmConInserted bitmap: n

1 bmConInserted n Bitmap Each set bit represents a currently inserted
connector.

5.2.1.6.2 OVERLOAD CONTROL

The Overload Control is used to indicate the existence of an overload condition within a Terminal. (E.g. overvoltage

at the analog line-in connector; thermal overload in powered speakers; etc.) If implemented, this Control shall be

Read-Only. An Overload Control shall have only the CUR attribute. The value of an Overload Control CUR attribute

shall be either TRUE (overload condition exists) or FALSE (normal).

Release 3.0 September 22, 2016 112

The Control Selector field shall be set to TE_OVERLOAD_CONTROL and the Channel Number field indicates the

desired Channel.

The parameter block for this Control request uses Layout 1 (See Section 5.2.1.3.1, “Layout 1 Parameter Block.”)

5.2.1.6.3 UNDERFLOW CONTROL

See Section 5.2.1.4.2, “Underflow Control” for a detailed description. XX shall be replaced by TE.

5.2.1.6.4 OVERFLOW CONTROL

See Section 5.2.1.4.3, “Overflow Control” for a detailed description. XX shall be replaced by TE.

5.2.1.7 MIXER UNIT CONTROL REQUEST

This request is used to manipulate the Controls inside a Mixer Unit of the Audio Function. The exact layout of the

request is defined in Section 5.2.1.3, “Control Request Parameter Block Layout.”

The wValue field specifies the Control Selector (CS) in the high byte and the Mixer Control Number (MCN) or the

Channel Number (CN) in the low byte. If the CS value indicates that a Mixer Control is addressed

(CS = MIXER_CONTROL), then the low byte contains the MCN. The MCN is derived according to the rules

established in Section 4.5.2.5, “Mixer Unit Descriptor.”

The following paragraphs present a detailed description of all possible Controls a Mixer Unit can incorporate. For

each Control, the supported attributes and their value ranges are specified. Also, the appropriate Control Selector

value and the layout type of the parameter blocks are listed. The Control Selector codes are defined in Appendix

A.23.6, “Mixer Control Selectors.”

5.2.1.7.1 MIXER CONTROL

A Mixer Unit consists of a number of N Mixer Controls, either programmable or fixed. At a minimum, all N Mixer

Controls shall be present and implemented as Read-Only and support the CUR attribute. If a Mixer Control is

implemented as Read-Write (programmable), the RANGE(MIN, MAX, RES) attributes shall also be supported. The

settings for the CUR, MIN, and MAX attributes can range from +127.9961 dB (0x7FFF) down to -127.9961 dB

(0x8001) in steps of 1/256 dB or 0.00390625 dB (0x0001). The settings for the RES attribute can only have positive

values and range from 1/256 dB (0x0001) to +127.9961 dB (0x7FFF).

In addition, code 0x8000, representing silence (i.e., - dB), shall always be implemented. However, it shall never

be reported as the MIN attribute value.

The Control Selector field shall be set to MU_MIXER_CONTROL and the Mixer Control Number field shall be set to

the MCN of the particular Mixer Control that needs to be addressed.

The parameter block for this Control request uses Layout 2 (See Section 5.2.1.3.2, “Layout 2 Parameter Block.”)

5.2.1.7.2 UNDERFLOW CONTROL

See Section 5.2.1.4.2, “Underflow Control” for a detailed description. XX shall be replaced by MU.

5.2.1.7.3 OVERFLOW CONTROL

See Section 5.2.1.4.3, “Overflow Control” for a detailed description. XX shall be replaced by MU.

Release 3.0 September 22, 2016 113

5.2.1.8 SELECTOR UNIT CONTROL REQUEST

This request is used to manipulate the Controls inside a Selector Unit of the Audio Function. The exact layout of

the request is defined in Section 5.2.1.3, “Control Request Parameter Block Layout.”

The following paragraphs present a detailed description of all possible Controls a Selector Unit can incorporate. For

each Control, the supported attributes and their value ranges are specified. Also, the appropriate Control Selector

value and the layout type of the parameter blocks are listed. The Control Selector codes are defined in Appendix

A.23.7, “Selector Control Selectors.”

5.2.1.8.1 SELECTOR CONTROL

A Selector Unit represents a multi-channel source selector, capable of selecting among a number of identically

configured Clusters. The Selector Control shall be present and at least be implemented as Read-Only. (Means

external to USB may change this Control.) A Selector Control shall have only the CUR attribute. The valid range for

the CUR attribute is from one up to the number of Input Pins of the Selector Unit. This value can be found in the

bNrInPins field of the Selector Unit descriptor.

The Control Selector field shall be set to SU_SELECTOR_CONTROL and the Channel Number field shall be set to

zero (master Control).

The parameter block for this Control request uses Layout 1 (See Section 5.2.1.3.1, “Layout 1 Parameter Block.”)

5.2.1.9 FEATURE UNIT CONTROL REQUEST

This request is used to manipulate the Controls inside a Feature Unit of the Audio Function. The exact layout of the

request is defined in Section 5.2.1.3, “Control Request Parameter Block Layout.”

The following paragraphs present a detailed description of all possible Controls a Feature Unit can incorporate. For

each Control, the supported attributes and their value ranges are specified. Also, the appropriate Control Selector

value and the layout type of the parameter blocks are listed. The Control Selector codes are defined in Appendix

A.23.8, “Feature Unit Control Selectors.”

5.2.1.9.1 MUTE CONTROL

The Mute Control is one of the building blocks of a Feature Unit. A Mute Control shall have only the CUR attribute.

The value of a Mute Control CUR attribute shall be either TRUE (muted) or FALSE (not muted).

A particular Mute Control within a Feature Unit is addressed through the Unit ID and Channel Number fields of the

Set/Get Feature Unit Control request. The valid range for the Channel Number field is from zero (the ‘master’

channel) up to the number of logical channels in the Cluster.

The Control Selector field shall be set to FU_MUTE_CONTROL and the Channel Number field indicates the desired

Channel.

The parameter block for this Control request uses Layout 1 (See Section 5.2.1.3.1, “Layout 1 Parameter Block.”)

5.2.1.9.2 VOLUME CONTROL

The Volume Control is one of the building blocks of a Feature Unit. A Volume Control shall support the CUR and

RANGE(MIN, MAX, RES) attributes. The settings for the CUR, MIN, and MAX attributes can range from

+127.9961 dB (0x7FFF) down to -127.9961 dB (0x8001) in steps of 1/256 dB or 0.00390625 dB (0x0001). The

Release 3.0 September 22, 2016 114

settings for the RES attribute can only have positive values and range from 1/256 dB (0x0001) to +127.9961 dB

(0x7FFF).

In addition, code 0x8000, representing silence (i.e., - dB), shall always be implemented. However, it shall never

be reported as the MIN attribute value.

A particular Volume Control within a Feature Unit is addressed through the Unit ID and Channel Number fields of

the Set/Get Feature Unit Control request. The valid range for the Channel Number field is from zero (the ‘master’

channel) up to the number of logical channels in the Cluster.

The Control Selector field shall be set to FU_VOLUME_CONTROL and the Channel Number field indicates the

desired Channel.

The parameter block for this Control request uses Layout 2 (See Section 5.2.1.3.2, “Layout 2 Parameter Block.”)

5.2.1.9.3 BASS CONTROL

The Bass Control is one of the building blocks of a Feature Unit. The Bass Control influences the general Bass

behavior of the Feature Unit. A Bass Control shall support the CUR and RANGE(MIN, MAX, RES) attributes. The

settings for the CUR, MIN, and MAX attributes can range from +31.75 dB (0x7F) down to –32.00 dB (0x80) in steps

of 0.25 dB (0x01). The settings for the RES attribute can only have positive values and range from 0.25 dB (0x01) to

+31.75 dB (0x7F). Other parameters that also influence the behavior of the Bass Control, such as cut-off frequency,

cannot be altered through this request.

A particular Bass Control within a Feature Unit is addressed through the Unit ID and Channel Number fields of the

Set/Get Feature Unit Control request. The valid range for the Channel Number field is from zero (the ‘master’

channel) up to the number of logical channels in the Cluster.

The Control Selector field shall be set to FU_BASS_CONTROL and the Channel Number field indicates the desired

Channel.

The parameter block for this Control request uses Layout 1 (See Section 5.2.1.3.1, “Layout 1 Parameter Block.”)

5.2.1.9.4 MID CONTROL

The Mid Control is one of the building blocks of a Feature Unit. The Mid Control influences the general Mid

behavior of the Feature Unit. A Mid Control shall support the CUR and RANGE(MIN, MAX, RES) attributes. The

settings for the CUR, MIN, and MAX attributes can range from +31.75 dB (0x7F) down to –32.00 dB (0x80) in steps

of 0.25 dB (0x01). The settings for the RES attribute can only have positive values and range from 0.25 dB (0x01) to

+31.75 dB (0x7F). Other parameters that also influence the behavior of the Mid Control, such as cut-off frequency,

cannot be altered through this request.

A particular Mid Control within a Feature Unit is addressed through the Unit ID and Channel Number fields of the

Set/Get Feature Unit Control request. The valid range for the Channel Number field is from zero (the ‘master’

channel) up to the number of logical channels in the Cluster.

The Control Selector field shall be set to FU_MID_CONTROL and the Channel Number field indicates the desired

Channel.

The parameter block for this Control request uses Layout 1 (See Section 5.2.1.3.1, “Layout 1 Parameter Block.”)

Release 3.0 September 22, 2016 115

5.2.1.9.5 TREBLE CONTROL

The Treble Control is one of the building blocks of a Feature Unit. The Treble Control influences the general Treble

behavior of the Feature Unit. A Treble Control shall support the CUR and RANGE(MIN, MAX, RES) attributes. The

settings for the CUR, MIN, and MAX attributes can range from +31.75 dB (0x7F) down to –32.00 dB (0x80) in steps

of 0.25 dB (0x01). The settings for the RES attribute can only have positive values and range from 0.25 dB (0x01) to

+31.75 dB (0x7F). Other parameters that also influence the behavior of the Treble Control, such as cut-off

frequency, cannot be altered through this request.

A particular Treble Control within a Feature Unit is addressed through the Unit ID and Channel Number fields of

the Set/Get Feature Unit Control request. The valid range for the Channel Number field is from zero (the ‘master’

channel) up to the number of logical channels in the Cluster.

The Control Selector field shall be set to FU_TREBLE_CONTROL and the Channel Number field indicates the desired

Channel.

The parameter block for this Control request uses Layout 1 (See Section 5.2.1.3.1, “Layout 1 Parameter Block.”)

5.2.1.9.6 GRAPHIC EQUALIZER CONTROL

The Graphic Equalizer Control is one of the optional building blocks of a Feature Unit. The Audio Device Class

definition provides for standard support of a third octave graphic equalizer. The bands are defined according to the

ANSI S1.11-1986 standard. Bands are numbered from 14 (center frequency of 25 Hz) up to 43 (center frequency of

20,000 Hz), making a total of 30 possible bands. The following table lists the band numbers and their center

frequencies

Table 5-10: Band Numbers and Center Frequencies (ANSI S1.11-1986 Standard)

Band Nr. Center Freq. Band Nr. Center Freq. Band Nr. Center Freq.

14 25 Hz 24* 250 Hz 34 2500 Hz

15* 31.5 Hz 25 315 Hz 35 3150 Hz

16 40 Hz 26 400 Hz 36* 4000 Hz

17 50 Hz 27* 500 Hz 37 5000 Hz

18* 63 Hz 28 630 Hz 38 6300 Hz

19 80 Hz 29 800 Hz 39* 8000 Hz

20 100 Hz 30* 1000 Hz 40 10000 Hz

21* 125 Hz 31 1250 Hz 41 12500 Hz

22 160 Hz 32 1600 Hz 42* 16000 Hz

23 200 Hz 33* 2000 Hz 43 20000 Hz

Note: Bands marked with an asterisk (*) are those present in an octave equalizer.

A Feature Unit that supports the Graphic Equalizer Control is not required to implement the full set of filters. A

subset (for example, octave bands) may be implemented. During a Get Control request, the bmBandsPresent field

in the parameter block is a bitmap indicating which bands are effectively implemented and thus reported back in

the returned parameter block. Consequently, the number of bits set in this field determines the total length of the

returned parameter block. During a Set Control request, a bit set in the bmBandsPresent field indicates there is a

new setting for that band in the parameter block that follows. The new values shall be in ascending order. If the

Release 3.0 September 22, 2016 116

number of bits set in the bmBandsPresent field does not match the number of parameters specified in the

following block, the control pipe shall indicate a stall.

A Graphic Equalizer Control shall support the CUR and RANGE(MIN, MAX, RES) attributes. The settings for the CUR,

MIN, and MAX attributes can range from +31.75 dB (0x7F) down to –32.00 dB (0x80) in steps of 0.25 dB (0x01). The

settings for the RES attribute can only have positive values and range from 0.25 dB (0x01) to +31.75 dB (0x7F).

A particular Graphic Equalizer Control within a Feature Unit is addressed through the Unit ID and Channel Number

fields of the Set/Get Feature Unit Control request. The valid range for the Channel Number field is from zero (the

‘master’ channel) up to the number of logical channels in the Cluster.

The Control Selector field shall be set to FU_GRAPHIC_EQUALIZER_CONTROL and the Channel Number field

indicates the desired Channel.

The parameter block for the CUR attribute of the Graphic Equalizer Control is as follows:

Table 5-11: Graphic Equalizer Control CUR Parameter Block

wLength 4+(number of bits set in bmBandsPresent : NrBits)

Offset Field Size Value Description

0 bmBandsPresent 4 Bitmap A bit set indicates the band is present:

D0: Band 14 is present.

D1: Band 15 is present.

…

D29: Band 43 is present.

D30: Reserved.

D31: Reserved.

4 bCUR(Lowest) 1 Number The setting for the CUR attribute of the
lowest band present:

0x7F: +31.75 dB.

0x7E: +31.50 dB.

…

0x00: 0.00 dB.

…

0x82: -31.50 dB.

0x81: -31.75 dB.

0x80: -32.00 dB.

… … … … …

4+(NrBits-1) bCUR(Highest) 1 Number The setting for the CUR attribute of the
highest band present.

The parameter block for the RANGE attribute of the Graphic Equalizer Control is as follows:

Table 5-12: Graphic Equalizer Control RANGE Parameter Block

wLength 2+3*n

Offset Field Size Value Description

0 wNumSubRanges 2 Number The number of subranges of the Graphic
Equalizer Control: n

Release 3.0 September 22, 2016 117

2 bMIN(1) 1 Number The setting for the MIN attribute of the first
subrange of the Graphic Equalizer Control

3 bMAX(1) 1 Number The setting for the MAX attribute of the first
subrange of the Graphic Equalizer Control

4 bRES(1) 1 Number The setting for the RES attribute of the first
subrange of the Graphic Equalizer Control

… … … … …

2+3*(n-1) bMIN(n) 1 Number The setting for the MIN attribute of the last
subrange of the Graphic Equalizer Control

3+3*(n-1) bMAX(n) 1 Number The setting for the MAX attribute of the last
subrange of the Graphic Equalizer Control

4+3*(n-1) bRES(n) 1 Number The setting for the RES attribute of the last
subrange of the Graphic Equalizer Control

5.2.1.9.7 AUTOMATIC GAIN CONTROL

The Automatic Gain Control (AGC) is one of the building blocks of a Feature Unit. An Automatic Gain Control shall

have only the CUR attribute. The value of an Automatic Gain Control CUR attribute shall be either TRUE or FALSE.

A particular Automatic Gain Control within a Feature Unit is addressed through the Unit ID and Channel Number

fields of the Set/Get Feature Unit Control request. The valid range for the Channel Number field is from zero (the

‘master’ channel) up to the number of logical channels in the Cluster.

The Control Selector field shall be set to FU_AUTOMATIC_GAIN _CONTROL and the Channel Number field indicates

the desired Channel.

The parameter block for this Control request uses Layout 1 (See Section 5.2.1.3.1, “Layout 1 Parameter Block.”)

5.2.1.9.8 DELAY CONTROL

The Delay Control is one of the building blocks of a Feature Unit. A Delay Control shall support the CUR and

RANGE(MIN, MAX, RES) attributes. The settings for the CUR, MIN, MAX, and RES attributes are expressed in

seconds using a 10.22 format (32 bits). Therefore, they range from zero (0x00000000) to 1023.999999761581 s

(0xFFFFFFFF) in steps of 1/4194304 s (0x00000001).

A particular Delay Control within a Feature Unit is addressed through the Unit ID and Channel Number fields of the

Set/Get Feature Unit Control request. The valid range for the Channel Number field is from zero (the ‘master’

channel) up to the number of logical channels in the Cluster.

The Control Selector field shall be set to FU_DELAY_CONTROL and the Channel Number field indicates the desired

Channel.

The parameter block for this Control request uses Layout 3 (See Section 5.2.1.3.3, “Layout 3 Parameter Block.”)

5.2.1.9.9 BASS BOOST CONTROL

The Bass Boost Control is one of the building blocks of a Feature Unit. A Bass Boost Control shall have only the CUR

attribute. The position of a Bass Boost Control CUR attribute shall be either TRUE or FALSE.

Release 3.0 September 22, 2016 118

A particular Bass Boost Control within a Feature Unit is addressed through the Unit ID and Channel Number fields

of the Set/Get Feature Unit Control request. The valid range for the Channel Number field is from zero (the

‘master’ channel) up to the number of logical channels in the Cluster.

The Control Selector field shall be set to FU_BASS_BOOST_CONTROL and the Channel Number field indicates the

desired Channel.

The parameter block for this Control request uses Layout 1 (See Section 5.2.1.3.1, “Layout 1 Parameter Block.”)

5.2.1.9.10 LOUDNESS CONTROL

The Loudness Control is one of the building blocks of a Feature Unit. A Loudness Control shall have only the CUR

attribute. The value of a Loudness Control CUR attribute shall be either TRUE or FALSE.

A particular Loudness Control within a Feature Unit is addressed through the Unit ID and Channel Number fields of

the Set/Get Feature Unit Control request. The valid range for the Channel Number field is from zero (the ‘master’

channel) up to the number of logical channels in the Cluster.

The Control Selector field shall be set to FU_LOUDNESS_CONTROL and the Channel Number field indicates the

desired Channel.

The parameter block for this Control request uses Layout 1 (See Section 5.2.1.3.1, “Layout 1 Parameter Block.”)

5.2.1.9.11 INPUT GAIN CONTROL

The Input Gain Control is one of the building blocks of a Feature Unit. An Input Gain Control shall support the CUR

and RANGE(MIN, MAX, RES) attributes. The settings for the CUR, MIN, and MAX attributes can range from

+127.9961 dB (0x7FFF) down to -127.9961 dB (0x8001) in steps of 1/256 dB or 0.00390625 dB (0x0001). The

settings for the RES attribute can only have positive values and range from 1/256 dB (0x0001) to +127.9961 dB

(0x7FFF).

A particular Input Gain Control within a Feature Unit is addressed through the Unit ID and Channel Number fields

of the Set/Get Feature Unit Control request. The valid range for the Channel Number field is from zero (the

‘master’ channel) up to the number of logical channels in the Cluster.

The Control Selector field shall be set to FU_INPUT_GAIN_CONTROL and the Channel Number field indicates the

desired Channel.

The parameter block for this Control request uses Layout 2 (See Section 5.2.1.3.2, “Layout 2 Parameter Block.”)

5.2.1.9.12 INPUT GAIN PAD CONTROL

The Input Gain Pad Control is one of the building blocks of a Feature Unit. An Input Gain Pad Control shall support

the CUR and RANGE(MIN, MAX, RES) attributes. The settings for the CUR, MIN, and MAX attributes can range from

+127.9961 dB (0x7FFF) down to -127.9961 dB (0x8001) in steps of 1/256 dB or 0.00390625 dB (0x0001). The

settings for the RES attribute can only have positive values and range from 1/256 dB (0x0001) to +127.9961 dB

(0x7FFF).

A particular Input Gain Pad Control within a Feature Unit is addressed through the Unit ID and Channel Number

fields of the Set/Get Feature Unit Control request. The valid range for the Channel Number field is from zero (the

‘master’ channel) up to the number of logical channels in the Cluster.

The Control Selector field shall be set to FU_INPUT_GAIN_PAD_CONTROL and the Channel Number field indicates

the desired Channel.

Release 3.0 September 22, 2016 119

The parameter block for this Control request uses Layout 2 (See Section 5.2.1.3.2, “Layout 2 Parameter Block.”)

5.2.1.9.13 PHASE INVERTER CONTROL

The Phase Inverter Control is one of the building blocks of a Feature Unit. A Phase Inverter Control shall have only

the CUR attribute. The value of a Phase Inverter Control CUR attribute shall be either TRUE or FALSE.

A particular Phase Inverter Control within a Feature Unit is addressed through the Unit ID and Channel Number

fields of the Set/Get Feature Unit Control request. The valid range for the Channel Number field is from zero (the

‘master’ channel) up to the number of logical channels in the Cluster.

The Control Selector field shall be set to FU_PHASE_INVERTER_CONTROL and the Channel Number field indicates

the desired Channel.

The parameter block for this Control request uses Layout 1 (See Section 5.2.1.3.1, “Layout 1 Parameter Block.”)

5.2.1.9.14 UNDERFLOW CONTROL

See Section 5.2.1.4.2, “Underflow Control” for a detailed description. XX shall be replaced by FU.

5.2.1.9.15 OVERFLOW CONTROL

See Section 5.2.1.4.3, “Overflow Control” for a detailed description. XX shall be replaced by FU.

5.2.1.10 EFFECT UNIT CONTROL REQUEST

This request is used to manipulate the Controls inside an Effect Unit of the Audio Function. The exact layout of the

request is defined in Section 5.2.1.3, “Control Request Parameter Block Layout.”

The following paragraphs present a detailed description of all possible Controls an Effect Unit can incorporate. For

each Control, the supported attributes and their value ranges are specified. Also, the appropriate Control Selector

value and the layout type of the parameter blocks are listed. The Control Selector codes are defined in Appendix

A.23.9, “Effect Unit Control Selectors.”

5.2.1.10.1 PARAMETRIC EQUALIZER SECTION EFFECT UNIT

5.2.1.10.1.1 ENABLE CONTROL

This Control shall be present and implemented as Read-Write. See Section 5.2.1.4.1, “Enable Control” for a

detailed description. XX shall be replaced by PE.

5.2.1.10.1.2 CENTER FREQUENCY CONTROL

The Center Frequency Control is used to manipulate the actual center frequency of the PEQS Effect Unit.

The Center Frequency Control shall support the CUR and RANGE(MIN, MAX, RES) attributes. The settings for the

CUR, MIN, MAX and RES attributes can range from 0 Hz (0x00000000) to 4,294,967,295 Hz (0xFFFFFFFF) in steps of

1 Hz (0x00000001).

Note: A discrete list of supported center frequencies can be expressed using the method as explained in

Section 5.2.1.1, “Control Attributes.”

The Control Selector field shall be set to PE_CENTER_FREQ_CONTROL and the Channel Number field indicates

the desired Channel.

Release 3.0 September 22, 2016 120

The parameter block for this Control request uses Layout 3 (See Section 5.2.1.3.3, “Layout 3 Parameter Block.”)

5.2.1.10.1.3 QFACTOR CONTROL

The Qfactor Control is used to manipulate the range of frequencies affected around the center frequency of the

PEQS Effect Unit.

The Qfactor Control shall support the CUR and RANGE(MIN, MAX, RES) attributes. The settings for the CUR, MIN,

MAX and RES attributes can range from 0 (0x000.00000 – 12.20 format) to 4,095.999999046326 (0xFFF.FFFFF) in

steps of 0.000000953674316406 (0x000.00001).

The Control Selector field shall be set to PE_QFACTOR_CONTROL and the Channel Number field indicates the

desired Channel.

The parameter block for this Control request uses Layout 3 (See Section 5.2.1.3.3, “Layout 3 Parameter Block.”)

Note: The Q-factor of a filter is defined as the ratio of the center frequency to the bandwidth measured at the

-3 dB point. The result of a Q setting of 10 for a filter set to 1000 Hz is a bandwidth of 100 Hz. Likewise,

a center frequency of 5325 Hz and a Q setting of 7.25 results in a bandwidth of 734.48275862 Hz.

5.2.1.10.1.4 GAIN CONTROL

The Gain Control is used to manipulate the amount of gain or attenuation at the center frequency of the PEQS

Effect Unit. A Gain Control shall support the CUR and RANGE(MIN, MAX, RES) attributes. The settings for the CUR,

MIN, and MAX attributes can range from +127.9961 dB (0x7FFF) down to -127.9961 dB (0x8001) in steps of

1/256 dB or 0.00390625 dB (0x0001). The settings for the RES attribute can only have positive values and range

from 1/256 dB (0x0001) to +127.9961 dB (0x7FFF).

The Control Selector field shall be set to PE_GAIN_CONTROL and the Channel Number field indicates the desired

Channel.

The parameter block for this Control request uses Layout 2 (See Section 5.2.1.3.2, “Layout 2 Parameter Block.”)

5.2.1.10.1.5 UNDERFLOW CONTROL

See Section 5.2.1.4.2, “Underflow Control” for a detailed description. XX shall be replaced by PE.

5.2.1.10.1.6 OVERFLOW CONTROL

See Section 5.2.1.4.3, “Overflow Control” for a detailed description. XX shall be replaced by PE.

5.2.1.10.2 REVERBERATION EFFECT UNIT

5.2.1.10.2.1 ENABLE CONTROL

This Control shall be present and implemented as Read-Write. See Section 5.2.1.4.1, “Enable Control” for a

detailed description. XX shall be replaced by RV.

5.2.1.10.2.2 TYPE CONTROL

The Type Control is a macro parameter that allows global settings of reverb parameters within the Reverberation

Effect Unit. When a certain reverb type is selected, each reverb parameter will be set to the most suitable value.

Release 3.0 September 22, 2016 121

The Type Control shall support the CUR and RANGE(MIN, MAX, RES) attributes. The valid range for the CUR, MIN,

and MAX attributes is from 0 to 255. The RES attribute can only have a value of 1.

The CUR attribute subrange from 0 to 7 has predefined behavior:

0: Room 1 – simulates the reverberation of a small room.

1: Room 2 – simulates the reverberation of a medium room.

2: Room 3 – simulates the reverberation of a large room.

3: Hall 1 – simulates the reverberation of a medium concert hall.

4: Hall 2 – simulates the reverberation of a large concert hall.

5: Plate – simulates a plate reverberation (a studio device using a metal plate).

6: Delay – conventional delay that produces echo effects.

7: Panning Delay – special delay in which the delayed sounds move left and right.

The Control Selector field shall be set to RV_TYPE_CONTROL and the Channel Number field indicates the desired

Channel.

The parameter block for this Control request uses Layout 1 (See Section 5.2.1.3.1, “Layout 1 Parameter Block.”)

5.2.1.10.2.3 LEVEL CONTROL

The Level Control is used to set the amount of reverberant sound introduced by the Reverberation Effect Unit. The

Level Control shall support the CUR and RANGE(MIN, MAX, RES) attributes. The valid range for the CUR, MIN, MAX,

and RES attributes is from 0 % to 255 %, compared to the level of the original signal.

The Control Selector field shall be set to RV_LEVEL_CONTROL and the Channel Number field indicates the desired

Channel.

The parameter block for this Control request uses Layout 1 (See Section 5.2.1.3.1, “Layout 1 Parameter Block.”)

5.2.1.10.2.4 TIME CONTROL

The Time Control is used to set the time over which the reverberation, introduced by the Reverberation Effect

Unit, will continue. The Time Control shall support the CUR and RANGE(MIN, MAX, RES) attributes. The settings for

the CUR, MIN, MAX, and RES attributes can range from 0 s (0x0000) to 255.9961 s (0xFFFF) in steps of 1/256 s or

0.00390625 s (0x0001).

The Control Selector field shall be set to RV_TIME_CONTROL and the Channel Number field indicates the desired

Channel.

The parameter block for this Control request uses Layout 2 (See Section 5.2.1.3.2, “Layout 2 Parameter Block.”)

5.2.1.10.2.5 DELAY FEEDBACK CONTROL

The Delay Feedback Control is used when the reverb type is set to Type 6 (Delay) or Type 7 (Panning Delay). It sets

the way in which delay repeats. The Delay Feedback Control range shall support the CUR and RANGE(MIN, MAX,

RES) attributes. The valid range for the CUR, MIN, MAX, and RES attributes is from 0 % to 255 %. Higher values

result in more delay repeats.

Note: In practice, the delay feedback amount should be limited to 75 % to avoid unexpected feedback

distortion and continuous delay loop.

The Control Selector field shall be set to RV_FEEDBACK_CONTROL and the Channel Number field indicates the

desired Channel.

Release 3.0 September 22, 2016 122

The parameter block for this Control request uses Layout 1 (See Section 5.2.1.3.1, “Layout 1 Parameter Block.”)

5.2.1.10.2.6 PRE-DELAY CONTROL

The Pre-Delay Control is used to set the delay time between the original source and the initial reflection in the

reverberation, introduced by the Reverberation Effect Unit. The Pre-Delay Control shall support the CUR and

RANGE(MIN, MAX, RES) attributes. The settings for the CUR, MIN, MAX, and RES attributes can range from 0 ms

(0x0000) to 65535 ms (0xFFFF) in steps of 1 ms (0x0001).

The Control Selector field shall be set to RV_PREDELAY_CONTROL and the Channel Number field indicates the

desired Channel.

The parameter block for this Control request uses Layout 2 (See Section 5.2.1.3.2, “Layout 2 Parameter Block.”)

5.2.1.10.2.7 DENSITY CONTROL

The Density Control is used to set the density of reflections in the reverberant sound introduced by the

Reverberation Effect Unit. The Density Control shall support the CUR and RANGE(MIN, MAX, RES) attributes. The

valid range for the CUR, MIN, MAX, and RES attributes is from 0 (0x00) to 100 (0x64) in steps of 1 (0x01).

The Control Selector field shall be set to RV_DENSITY_CONTROL and the Channel Number field indicates the

desired Channel.

The parameter block for this Control request uses Layout 1 (See Section 5.2.1.3.1, “Layout 1 Parameter Block.”)

5.2.1.10.2.8 HI-FREQ ROLL-OFF CONTROL

The Hi-Freq Roll-Off Control is used to set the frequency of a low pass filter on the reverberant sound introduced

by the Reverberation Effect Unit. The Hi-Freq Roll-Off Control shall support the CUR and RANGE(MIN, MAX, RES)

attributes. The settings for the CUR, MIN, MAX and RES attributes can range from 0 Hz (0x00000000) to

4,294,967,295 Hz (0xFFFFFFFF) in steps of 1 Hz (0x00000001).

The Control Selector field shall be set to RV_HIFREQ_ROLLOFF_CONTROL and the Channel Number field indicates

the desired Channel.

The parameter block for this Control request uses Layout 3 (See Section 5.2.1.3.3, “Layout 3 Parameter Block.”)

5.2.1.10.2.9 UNDERFLOW CONTROL

See Section 5.2.1.4.2, “Underflow Control” for a detailed description. XX shall be replaced by RV.

5.2.1.10.2.10 OVERFLOW CONTROL

See Section 5.2.1.4.3, “Overflow Control” for a detailed description. XX shall be replaced by RV.

5.2.1.10.3 MODULATION DELAY EFFECT UNIT

5.2.1.10.3.1 ENABLE CONTROL

See Section 5.2.1.4.1, “Enable Control” for a detailed description. XX shall be replaced by MD.

Release 3.0 September 22, 2016 123

5.2.1.10.3.2 BALANCE CONTROL

The Balance Control is used to set the amount of effect sound introduced by the Modulation Delay Effect Unit. The

Balance Control shall support the CUR and RANGE(MIN, MAX, RES) attributes. The valid range for the CUR, MIN,

MAX attributes is from -100 % to +100 %. A setting of -100 % results in 100 % of original signal and 0 % of effected

signal. A setting of 0 % results in equal amounts of original signal and effected signal. A setting of +100 % results in

0 % of original signal and 100 % of effected signal. The settings for the RES attribute can only have positive values

and range from 1 % (0x01) to 100 % (0x64).

The Control Selector field shall be set to MD_BALANCE_CONTROL and the Channel Number field indicates the

desired Channel.

The parameter block for this Control request uses Layout 1 (See Section 5.2.1.3.1, “Layout 1 Parameter Block.”)

5.2.1.10.3.3 RATE CONTROL

The Rate Control is used to set the speed (frequency) of the modulator of the delay time introduced by the

Modulation Delay Effect Unit. Higher values result in faster modulation. The Rate Control shall support the CUR

and RANGE(MIN, MAX, RES) attributes. The settings for the CUR, MIN, MAX, and RES attributes can range from

0 Hz (0x0000) to 255.9961 Hz (0xFFFF) in steps of 1/256 Hz or 0.00390625 Hz (0x0001).

The Control Selector field shall be set to MD_RATE_CONTROL and the Channel Number field indicates the desired

Channel.

The parameter block for this Control request uses Layout 2 (See Section 5.2.1.3.2, “Layout 2 Parameter Block.”)

5.2.1.10.3.4 DEPTH CONTROL

The Depth Control is used to set the depth at which the effect sound introduced by the Modulation Delay Effect

Unit is modulated. Higher values result in deeper modulation. The Depth Control shall support the CUR and

RANGE(MIN, MAX, RES) attributes. The settings for the CUR, MIN, MAX, and RES attributes can range from 0 ms

(0x0000) to 255.9961 ms (0xFFFF) in steps of 1/256 ms or 0.00390625 ms (0x0001).

The Control Selector field shall be set to MD_DEPTH_CONTROL and the Channel Number field indicates the desired

Channel.

The parameter block for this Control request uses Layout 2 (See Section 5.2.1.3.2, “Layout 2 Parameter Block.”)

5.2.1.10.3.5 TIME CONTROL

The Time Control is used to set the length of the delay time introduced by the Modulation Delay Efect Unit. Higher

values result in longer times. The Time Control shall support the CUR and RANGE(MIN, MAX, RES) attributes. The

settings for the CUR, MIN, MAX, and RES attributes can range from 0 ms (0x0000) to 255.9961 ms (0xFFFF) in steps

of 1/256 ms or 0.00390625 ms (0x0001).

The Control Selector field shall be set to MD_TIME_CONTROL and the Channel Number field indicates the desired

Channel.

The parameter block for this Control request uses Layout 2 (See Section 5.2.1.3.2, “Layout 2 Parameter Block.”)

5.2.1.10.3.6 FEEDBACK LEVEL CONTROL

The Feedback Level Control is used to set the level at which the effected (delayed) sound introduced by the

Modulation Delay Effect Unit is mixed back into to its own input. Higher values result in higher level of feedback.

Release 3.0 September 22, 2016 124

The Feedback Level Control range shall support the CUR and RANGE(MIN, MAX, RES) attributes. The valid range for

the CUR, MIN, MAX, and RES attributes is from 0 % to 255 %. Higher values result in more delay repeats.

Note: In practice, the modulation delay feedback amount should be limited to 75 % to avoid unexpected

feedback distortion and continuous delay loop.

The Control Selector field shall be set to MD_FEEDBACK_CONTROL and the Channel Number field indicates the

desired Channel.

The parameter block for this Control request uses Layout 1 (See Section 5.2.1.3.1, “Layout 1 Parameter Block.”)

5.2.1.10.3.7 UNDERFLOW CONTROL

See Section 5.2.1.4.2, “Underflow Control” for a detailed description. XX shall be replaced by MD.

5.2.1.10.3.8 OVERFLOW CONTROL

See Section 5.2.1.4.3, “Overflow Control” for a detailed description. XX shall be replaced by MD.

5.2.1.10.4 DYNAMIC RANGE COMPRESSOR EFFECT UNIT

5.2.1.10.4.1 ENABLE CONTROL

See Section 5.2.1.4.1, “Enable Control” for a detailed description. XX shall be replaced by DR.

5.2.1.10.4.2 COMPRESSION RATIO CONTROL

The Compression Ratio Control is used to influence the slope of the active part of the static input-to-output

transfer characteristic of the Dynamic Range Compressor Processing Unit. The Compression Ratio Control shall

support the CUR and RANGE(MIN, MAX, RES) attributes. The valid range for the CUR, MIN, MAX, and RES attributes

is from 0 (0x0000) to 255.9961 (0xFFFF) in steps of 1/256 or 0.00390625 (0x0001).

The Control Selector field shall be set to DR_COMPRESSION_RATIO_CONTROL and the Channel Number field

indicates the desired Channel.

The parameter block for this Control request uses Layout 2 (See Section 5.2.1.3.2, “Layout 2 Parameter Block.”)

5.2.1.10.4.3 MAXAMPL CONTROL

The MaxAmpl Control is used to set the upper boundary of the active input range of the compressor. The MaxAmpl

Control shall support the CUR and RANGE(MIN, MAX, RES) attributes. The settings for the CUR, MIN, and MAX

attributes can range from -128.0000 dB (0x8000) to +127.9961 dB (0x7FFF) in steps of 1/256 dB or 0.00390625 dB

(0x0001). The settings for the RES attribute can only have positive values and range from 1/256 dB (0x0001) to

+127.9961 dB (0x7FFF).

The Control Selector field shall be set to DR_MAXAMPL_CONTROL and the Channel Number field indicates the

desired Channel.

The parameter block for this Control request uses Layout 2 (See Section 5.2.1.3.2, “Layout 2 Parameter Block.”)

5.2.1.10.4.4 THRESHOLD CONTROL

The Threshold Control is used to set the lower boundary of the active input range of the compressor. The

Threshold Control shall support the CUR and RANGE(MIN, MAX, RES) attributes. The settings for the CUR, MIN, and

Release 3.0 September 22, 2016 125

MAX attributes can range from -128.0000 dB (0x8000) to +127.9961 dB (0x7FFF) in steps of 1/256 dB or

0.00390625 dB (0x0001). The settings for the RES attribute can only have positive values and range from 1/256 dB

(0x0001) to +127.9961 dB (0x7FFF).

The Control Selector field shall be set to DR_TRESHOLD_CONTROL and the Channel Number field indicates the

desired Channel.

The parameter block for this Control request uses Layout 2 (See Section 5.2.1.3.2, “Layout 2 Parameter Block.”)

5.2.1.10.4.5 ATTACK TIME CONTROL

The Attack Time Control is used to determine the response of the compressor to a step increase in the input signal

level. The Attack Time Control shall support the CUR and RANGE(MIN, MAX, RES) attributes. The settings for the

CUR, MIN, MAX, and RES attributes can range from 0 ms (0x0000) to 255.9961 ms (0xFFFF) in steps of 1/256 ms or

0.00390625 ms (0x0001).

The Control Selector field shall be set to DR_ATTACK_TIME_CONTROL and the Channel Number field indicates the

desired Channel.

The parameter block for this Control request uses Layout 2 (See Section 5.2.1.3.2, “Layout 2 Parameter Block.”)

5.2.1.10.4.6 RELEASE TIME CONTROL

The Release Time Control is used to determine the recovery response of the compressor to a step decrease in the

input signal level. The Release Time Control shall support the CUR and RANGE(MIN, MAX, RES) attributes. The

settings for the CUR, MIN, MAX, and RES attributes can range from 0 ms (0x0000) to 255.9961 ms (0xFFFF) in steps

of 1/256 ms or 0.00390625 ms (0x0001).

The Control Selector field shall be set to DR_RELEASE_TIME_CONTROL and the Channel Number field indicates the

desired Channel.

The parameter block for this Control request uses Layout 2 (See Section 5.2.1.3.2, “Layout 2 Parameter Block.”)

5.2.1.10.4.7 UNDERFLOW CONTROL

See Section 5.2.1.4.2, “Underflow Control” for a detailed description. XX shall be replaced by DR.

5.2.1.10.4.8 OVERFLOW CONTROL

See Section 5.2.1.4.3, “Overflow Control” for a detailed description. XX shall be replaced by DR.

5.2.1.11 PROCESSING UNIT CONTROL REQUEST

This request is used to manipulate the Controls inside a Processing Unit of the Audio Function. The exact layout of

the request is defined in Section 5.2.1.3, “Control Request Parameter Block Layout.”

The following paragraphs present a detailed description of all possible Controls a Processing Unit can incorporate.

For each Control, the supported attributes and their value ranges are specified. Also, the appropriate Control

Selector value and the layout type of the parameter blocks are listed. The Control Selector codes are defined in

Appendix A.23.10, “Processing Unit Control Selectors.”

Release 3.0 September 22, 2016 126

5.2.1.11.1 UP/DOWN-MIX PROCESSING UNIT

5.2.1.11.1.1 MODE SELECT CONTROL

The Mode Select Control is used to change the behavior of the Up/Down-mix Processing Unit. A Mode Select

Control shall have only the CUR attribute. The valid range for the CUR attribute is from one to the number of

modes, supported by the Entity (reported through the bNrModes field of the Up/Down-mix Processing Unit

descriptor).

The Control Selector field shall be set to UD_MODE_SELECT_CONTROL and the Channel Number field shall be set

to zero (master Control).

The parameter block for this Control request uses Layout 1 (See Section 5.2.1.3.1, “Layout 1 Parameter Block.”)

5.2.1.11.1.2 UNDERFLOW CONTROL

See Section 5.2.1.4.2, “Underflow Control” for a detailed description. XX shall be replaced by UD.

5.2.1.11.1.3 OVERFLOW CONTROL

See Section 5.2.1.4.3, “Overflow Control” for a detailed description. XX shall be replaced by UD.

5.2.1.11.2 STEREO EXTENDER PROCESSING UNIT

5.2.1.11.2.1 WIDTH CONTROL

The Width Control is used to change the spatial appearance of the stereo image, produced by the Stereo Extender

Processing Unit. The Width Control shall support the CUR and RANGE(MIN, MAX, RES) attributes. The valid range

for the CUR, MIN, MAX, and RES attributes is from 0 to 255.

The Control Selector field shall be set to ST_EXT_WIDTH_CONTROL and the Channel Number field shall be set to

zero (master Control).

The parameter block for this Control request uses Layout 1 (See Section 5.2.1.3.1, “Layout 1 Parameter Block.”)

5.2.1.11.2.2 UNDERFLOW CONTROL

See Section 5.2.1.4.2, “Underflow Control” for a detailed description. XX shall be replaced by ST.

5.2.1.11.2.3 OVERFLOW CONTROL

See Section 5.2.1.4.3, “Overflow Control” for a detailed description. XX shall be replaced by ST.

5.2.1.12 EXTENSION UNIT CONTROL REQUESTS

Because this specification has no knowledge about the inner workings of an Extension Unit, it is impossible to

define requests that are able to manipulate specific Extension Unit Controls. However, this specification defines a

number of Controls an Extension Unit shall or can support.

This request is used to manipulate the Controls inside an Extension Unit of the Audio Function. The exact layout of

the request is defined in Section 5.2.1.3, “Control Request Parameter Block Layout.”

The following paragraphs present a detailed description of all possible Controls a Processing Unit can incorporate.

For each Control, the supported attributes and their value ranges are specified. Also, the appropriate Control

Release 3.0 September 22, 2016 127

Selector value and the layout type of the parameter blocks are listed. Issuing non-supported Control Selectors to

an Extension Unit leads to a control pipe stall. The Control Selector codes are defined in Appendix A.23.11,

“Extension Unit Control Selectors.”

5.2.1.12.1.1 UNDERFLOW CONTROL

See Section 5.2.1.4.2, “Underflow Control” for a detailed description. XX shall be replaced by XU.

5.2.1.12.1.2 OVERFLOW CONTROL

See Section 5.2.1.4.3, “Overflow Control” for a detailed description. XX shall be replaced by XU.

5.2.1.13 CLOCK SOURCE CONTROL REQUEST

This request is used to manipulate the Controls inside a Clock Source Entity of the Audio Function. The exact layout

of the request is defined in Section 5.2.1.3, “Control Request Parameter Block Layout.”

The following paragraphs present a detailed description of all possible Controls a Clock Source Entity can

incorporate. For each Control, the supported attributes and their value ranges are specified. Also, the appropriate

Control Selector value and the layout type of the parameter blocks are listed. The Control Selector codes are

defined in Appendix A.23.2, “Clock Source Control Selectors.”

5.2.1.13.1 SAMPLING FREQUENCY CONTROL

The Sampling Frequency Control is used to manipulate the actual sampling frequency of the clock signal that is

generated by the Clock Source Entity. At a minimum, this Control shall be supported as Read-Only by every Clock

Source Entity.

The Sampling Frequency Control shall support the CUR and RANGE(MIN, MAX, RES) attributes. The settings for the

CUR, MIN, MAX and RES attributes can range from 0 Hz (0x00000000) to 4,294,967,295 Hz (0xFFFFFFFF) in steps of

1 Hz (0x00000001).

Note: A discrete list of supported sampling frequencies can be expressed using the method as explained in

Section 5.2.1.1, “Control Attributes.”

In many cases, the Clock Source Entity represents a crystal oscillator based generator with a single fixed frequency.

In that case, the Set request is not supported. Additionally, the Set request may not be supported if the Clock

Source entity represents an external clock which cannot be controlled by the Audio Function hardware.

The Control Selector field shall be set to CS_SAM_FREQ_CONTROL and the Channel Number field shall be set to

zero (master Control).

The parameter block for this Control request uses Layout 3 (See Section 5.2.1.3.3, “Layout 3 Parameter Block.”)

5.2.1.13.2 CLOCK VALIDITY CONTROL

The Clock Validity Control is used to indicate if the clock signal that is generated by the Clock Source Entity is valid

(stable and reliable). Only the Get request is supported for this Control. The Clock Validity Control shall have only

the CUR attribute. The value of a Clock Validity Control CUR attribute shall be either TRUE (clock valid) or FALSE

(clock invalid).

The Control Selector field shall be set to CS_CLOCK_VALID_CONTROL and the Channel Number field shall be set to

zero (master Control).

Release 3.0 September 22, 2016 128

The parameter block for this Control request uses Layout 1 (See Section 5.2.1.3.1, “Layout 1 Parameter Block.”)

5.2.1.14 CLOCK SELECTOR CONTROL REQUEST

This request is used to manipulate the Controls inside a Clock Selector Entity of the Audio Function. The exact

layout of the request is defined in Section 5.2.1.3, “Control Request Parameter Block Layout.”

The following paragraphs present a detailed description of all possible Controls a Clock Selector Entity can

incorporate. For each Control, the supported attributes and their value ranges are specified. Also, the appropriate

Control Selector value and the layout type of the parameter blocks are listed. The Control Selector codes are

defined in Appendix A.23.3,”Clock Selector Control Selectors.”

5.2.1.14.1 CLOCK SELECTOR CONTROL

A Clock Selector Entity represents a multi-input source selector, capable of selecting among a number of clock

signals. The Clock Selector Control shall be present and at least be implemented as Read-Only. (Means external to

USB may change this Control.) The valid range for the CUR attribute is from one up to the number of Clock Input

Pins of the Clock Selector. This value can be found in the bNrInPins field of the Clock Selector descriptor.

The Control Selector field shall be set to CX_CLOCK_SELECTOR_CONTROL and the Channel Number field shall be

set to zero (master Control).

The parameter block for this Control request uses Layout 1 (See Section 5.2.1.3.1, “Layout 1 Parameter Block.”)

5.2.1.15 CLOCK MULTIPLIER CONTROL REQUEST

This request is used to manipulate the Controls inside a Clock Multiplier Entity of the Audio Function. The exact

layout of the request is defined in Section 5.2.1.3, “Control Request Parameter Block Layout.”

The following paragraphs present a detailed description of all possible Controls a Clock Multiplier Entity can

incorporate. For each Control, the supported attributes and their value ranges are specified. Also, the appropriate

Control Selector value and the layout type of the parameter blocks are listed. The Control Selector codes are

defined in Appendix A.23.4,”Clock Multiplier Control Selectors.”

5.2.1.15.1 NUMERATOR CONTROL

At a minimum, the Numerator Control shall be supported as Read-Only. It is used to manipulate the factor P by

which the incoming sampling clock signal is multiplied. This Control shall support the CUR and RANGE(MIN, MAX,

RES) attributes. The settings for the CUR, MIN, MAX and RES attributes can range from 1 (0x0001) to 216-1 (0xFFFF).

The Control Selector field shall be set to CM_ NUMERATOR_CONTROL and the Channel Number field shall be set to

zero (master Control).

The parameter block for this Control request uses Layout 2 (See Section 5.2.1.3.2, “Layout 2 Parameter Block.”)

5.2.1.15.2 DENOMINATOR CONTROL

At a minimum, the Denominator Control shall be supported as Read-Only. It is used to manipulate the factor Q by

which the incoming sampling clock signal is divided. This Control shall support the CUR and RANGE(MIN, MAX, RES)

attributes. The settings for the CUR, MIN, MAX and RES attributes can range from 1 (0x0001) to 216-1 (0xFFFF).

The Control Selector field shall be set to CM_ DENOMINATOR_CONTROL and the Channel Number field shall be set

to zero (master Control).

Release 3.0 September 22, 2016 129

The parameter block for this Control request uses Layout 2 (See Section 5.2.1.3.2, “Layout 2 Parameter Block.”)

5.2.2 AUDIOSTREAMING REQUESTS

The following sections describe the requests an Audio Function can support for its AudioStreaming interfaces. The

same layout of the parameter blocks is used for both the Set and Get requests.

AudioStreaming requests can be directed either to the AudioStreaming interface or to the associated isochronous

data endpoint, depending on the location of the Control to be manipulated.

5.2.2.1 INTERFACE CONTROL REQUESTS

These requests are used to manipulate the Controls inside an AudioStreaming interface of the Audio Function. The

exact layout of the request is defined in Section 5.2.1.3, “Control Request Parameter Block Layout.”

The following paragraphs present a detailed description of all possible Controls an AudioStreaming Interface can

incorporate. For each Control, the supported attributes and their value ranges are specified. Also, the appropriate

Control Selector value and the layout type of the parameter blocks are listed. The Control Selector codes are

defined in Appendix A.23.12, “AudioStreaming Interface Control Selectors.”

5.2.2.1.1 ACTIVE ALTERNATE SETTING CONTROL

This Control is used to inform Host software which Alternate Setting of an AudioStreaming interface is currently

active. The main purpose of this Control is to notify the Host (through an interrupt) that the last selected Alternate

Setting is no longer valid. There can be a variety of reasons why this could happen. For instance, increasing the

sampling frequency of a Clock Source Entity might render the current Alternate Setting of an interface connected

to that Clock Source invalid because more bandwidth is now needed than is available in the current Alternate

Setting.

This specification does not allow an interface to change from one active Alternate Setting to another without Host

intervention. Whenever an Alternate Setting becomes invalid, the interface is required to switch to (idle) Alternate

Setting zero. If this situation may occur in the Audio Function, this Control (and the Valid Alternate Settings

Control) shall be present and implemented as Read-Only. It always provides the currently active Alternate Setting

for the interface. The Host software needs to then take appropriate action to reactivate the interface by switching

to a valid Alternate Setting. An Active Alternate Setting Control shall have only the CUR attribute. The value of an

Active Alternate Setting Control CUR attribute shall only be either the last set Alternate Setting or zero.

The Control Selector field shall be set to AS_ACT_ALT_SETTING_CONTROL and the Channel Number field shall be

set to zero (master Control).

The parameter block for this Control request uses Layout 1 (See Section 5.2.1.3.1, “Layout 1 Parameter Block.”)

5.2.2.1.2 VALID ALTERNATE SETTINGS CONTROL

This Control is used to inform Host software what the currently possible valid Alternate Settings are for an

AudioStreaming interface. If the Active Alternate Setting Control is present, then this Control shall also be present

and be implemented as Read-Only. It always provides a list of currently valid Alternate Settings for the interface. A

Valid Alternate Settings Control shall have only the CUR attribute. The value of a Valid Alternate Setting Control

CUR attribute is a bitmap, returned in the bmValidAltSettings field, that contains a bit for each possible active

Alternate Setting. The bSize field indicates the length in bytes of the bmValidAltSettings field.

Release 3.0 September 22, 2016 130

A bit set means that this Alternate Setting is currently valid. A bit cleared means that this Alternate Setting is

currently not valid. Bit D0 corresponds to Alternate Setting 0 and shall always be set since it is always a possible

valid setting. Bit D1 corresponds to Alternate Setting 1. Bit Dm corresponds to Alternate Setting m. All bits that do

not correspond to an existing Alternate Setting shall be set to 0. An attempt to set the interface to an invalid

Alternate Setting (through the standard Set Interface request) will result in a control pipe stall.

The Control Selector field shall be set to AS_VAL_ALT_SETTINGS_CONTROL and the Channel Number field shall be

set to zero (master Control).

The parameter block for the CUR attribute of the Valid Alternate Settings Control is as follows:

Table 5-13: Valid Alternate Settings Control CUR Parameter Block

wLength 1+n

Offset Field Size Value Description

0 bSize 1 Number Indicates the number of bytes in the
bmValidAltSettings bitmap: n

1 bmValidAltSettings n Bitmap Each set bit represents a currently valid
Alternate Setting for the interface.

5.2.2.1.3 AUDIO DATA FORMAT CONTROL

The Audio Data Format Control is used to indicate which Audio Data Format is currently being used by the

AudioStreaming interface. Only the Get request is supported for this Control. The Audio Data Format Control shall

have only the CUR attribute. The returned value for the Audio Data Format Control CUR attribute follows the

definition of the bmFormats field in the class-specific AS interface descriptor. Only one bit can be set in the

bitmap, indicating exactly which Audio Data Format is being used by the interface.

The Control Selector field shall be set to AS_AUDIO_DATA_FORMAT_CONTROL and the Channel Number field shall

be set to zero (master Control).

The parameter block for this Control request is as follows:

Table 5-14: Audio Data Format Control CUR Parameter Block

wLength 8

Offset Field Size Value Description

0 bmFormats 8 Bitmap The Audio Data Format(s) that can be used
to communicate with this interface. See the
USB Audio Data Formats document for
further details.

5.2.2.2 ENDPOINT CONTROL REQUEST

This request is used to manipulate the Controls inside an AudioStreaming endpoint of the Audio Function. The

exact layout of the request is defined in Section 5.2.1.3, “Control Request Parameter Block Layout.”

The following paragraphs present a detailed description of all possible Controls an Endpoint can incorporate. For

each Control, the supported attributes and their value ranges are specified. Also, the appropriate Control Selector

value and the layout type of the parameter blocks are listed. The Control Selector codes are defined in

AppendixA.23.13, “Endpoint Control Selectors.”

Release 3.0 September 22, 2016 131

5.2.2.2.1 PITCH CONTROL

The Pitch Control enables or disables the ability of an adaptive endpoint to dynamically track its sampling

frequency. The Control is necessary because the clock recovery circuitry must be informed whether it should allow

for relatively large swings in the sampling frequency. A Pitch Control shall have only the CUR attribute. The value of

a Pitch Control CUR attribute shall be either TRUE or FALSE.

The Control Selector field shall be set to EP_PITCH_CONTROL and the Channel Number field shall be set to zero

(master Control).

The parameter block for this Control request uses Layout 1 (See Section 5.2.1.3.1, “Layout 1 Parameter Block.”)

5.2.2.2.2 DATA OVERRUN CONTROL

The Data Overrun Control is used to indicate the occurrence of a data overrun (buffer overflow) condition within

an Endpoint since the last Get Data Overrun request. If implemented, this Control shall be Read-Only. A Data

Overrun Control shall have only the CUR attribute. The value of a Data Overrun Control CUR attribute shall be

either TRUE (overrun condition occurred) or FALSE (normal).

The Control Selector field shall be set to EP_DATA_OVERRUN_CONTROL and the Channel Number field shall be set

to zero (master Control).

The parameter block for this Control request uses Layout 1 (See Section 5.2.1.3.1, “Layout 1 Parameter Block.”)

5.2.2.2.3 DATA UNDERRUN CONTROL

The Data Underrun Control is used to indicate the occurrence of a data underrun (buffer underflow) condition

within an Endpoint since the last Get Data Underrun request. If implemented, this Control shall be Read-Only. A

Data Underrun Control shall have only the CUR attribute. The value of a Data Underrun Control CUR attribute shall

be either TRUE (underrun condition occurred) or FALSE (normal).

The Control Selector field shall be set to EP_DATA_UNDERRUN_CONTROL and the Channel Number field shall be

set to zero (master Control).

The parameter block for this Control request uses Layout 1 (See Section 5.2.1.3.1, “Layout 1 Parameter Block.”)

5.2.3 ADDITIONAL REQUESTS

5.2.3.1 MEMORY REQUESTS

The Host can interact with an addressable Entity (Clock Entity, Terminal, Unit, Power domain, Interface or

endpoint) within the Audio Function in a very generic way. The Entity presents a memory space to the Host whose

layout depends on the implementation. The Memory request provides full access to this memory space.

Release 3.0 September 22, 2016 132

This request is used to upload or download a parameter block into a particular Entity of the Audio Function.

Table 5-15: Memory Request Values

bmRequest
Type

bRequest wValue wIndex wLength Data

00100001B
10100001B

MEM
INTEN

Offset Entity ID
and

Interface

Length of
parameter block

Parameter block

00100010B
10100010B

Zero
and

Endpoint

The bRequest field indicates that the MEM or INTEN attribute of the Entity is addressed.

The wValue field specifies a zero-based offset value that can be used to access only parts of the Entity’s memory

space.

The wIndex field specifies the interface or endpoint to be addressed in the low byte and the Entity ID (Clock Entity

ID, Unit ID, Terminal ID, or Power Domain ID) or zero in the high byte. In case an interface is addressed, the virtual

Entity ‘interface’ can be addressed by specifying zero in the high byte. The values in the wIndex field shall be

appropriate to the recipient. Only existing Entities in the Audio Function can be addressed and only appropriate

interface or endpoint numbers may be used. If the request specifies an unknown or non-Entity ID or an unknown

interface or endpoint number, the control pipe shall indicate a stall.

The layout of the parameter block is implementation dependent. A device is required to reevaluate its memory

space at the end of each Set Memory request.

The Interrupt Enable attribute is used to manipulate the memory space’s ability to generate an interrupt when any

of its memory locations change other than through Host manipulation. The Interrupt Enable attribute shall be

supported for all Entity memory spaces that are able to generate an interrupt. When supported, the Interrupt

Enable attribute is always Read-Write and therefore, both the Get and Set request shall be supported. The

Interrupt Enable attribute can take only two values: 0 (False, Disabled) or 1 (True, Enabled). All Interrupt Enable

attributes shall have a default value of 1 (Enabled).

5.2.3.2 CLASS-SPECIFIC STRING REQUEST

To overcome the limitations of the standard Get String descriptor request (limited to 255 device-wide strings), this

specification provides a class-specific extension to retrieve a larger set of potentially larger String descriptors from

the Audio Function.

The Get Class-specific String request is used to retrieve class-specific String descriptors and shall be supported if

the Audio Function contains at least one class-specific String descriptor. These String descriptors are uniquely

identified within the Audio Function through their wStrDescrID and iLangID values.

Release 3.0 September 22, 2016 133

Table 5-16: String Request

bmRequest
Type

bRequest wValue wIndex wLength Data

10100001B STRING wStrDescrID iLangID
and

Interface

Length of
parameter block

Parameter block

The bmRequestType field shall be set to 0b10100001 to indicate that this is a class-specific Get Request, directed

to the AudioControl interface.

The bRequest field indicates that the class-specific set of String descriptors is targeted.

The wValue field specifies the String descriptor’s wStrDescrID. For maximum interoperability between this class-

specific method to retrieve String descriptors from the Audio Function and the standard Get String descriptor

request, all Audio Function related standard String descriptors, including the LANGID code array at index 0, that

can be retrieved using the standard Get String descriptor request shall also be retrievable using this class-specific

String request by specifying zero in the high byte and the standard String descriptor index in the low byte of the

wStrDescrID value. Whether other than Audio Function related standard String descriptors present in the device

can be retrieved using this new method is implementation-dependent. Any newly defined class-specific String

descriptor that uses the wStrDescrID value as an index, shall use wStrDescrID values starting from 256 onwards.

The wIndex field specifies the iLangID in the high byte and the AudioControl interface number in the low byte. The

iLangID field contains a zero-based index into the LANGID code array as returned by the device. A device can at

most support 126 different languages since the LANGID code array is restricted to 254 bytes and each LANGID

code takes up 2 bytes. The range of the iLangID is therefore from 0 to 125 maximum.

The values specified in the wValue and wIndex fields shall be appropriate to the recipient. Only existing

wStrDescrID values in the Audio Function can be indexed and only appropriate iLangID and AudioControl interface

numbers may be used. If the request specifies an unknown wStrDescrID or iLangID value or an unknown

AudioControl interface number, the control pipe shall indicate a stall.

The length of the descriptor to return is indicated in the wLength field of the request. If the descriptor is longer

than what is indicated in the wLength field, only the initial bytes of the descriptor are returned. If the descriptor is

shorter than what is indicated in the wLength field, the device indicates the end of the control transfer by sending

a short packet when further data is requested.

The layout of the parameter block follows the class-specific String descriptor definition as outlined in Section 4.9,

“Class-specific String descriptors.”

5.2.3.3 HIGH CAPABILITY DESCRIPTOR REQUEST

To overcome the limitations of the standard Get Descriptor request (limited to maximum 256 bytes long), this

specification provides a class-specific method to retrieve larger descriptors from the Audio Function. Also, since

High Capability descriptors have the ability to report changes dynamically, they can be used whenever there is a

need for the descriptor to indicate that some of its values have changed (even when its length is less than 256

bytes).

The Get High Capability Descriptor request is used to retrieve High Capability descriptors and shall be supported

whenever the Audio Function uses at least one High Capability descriptor. A High Capability descriptor is uniquely

identified within an interface or endpoint by the wDescriptorID value.

Release 3.0 September 22, 2016 134

Table 5-17: High Capability Descriptor Request

bmRequest
Type

bRequest wValue wIndex wLength Data

10100001B HIGH_CAPABILITY
_DESCRIPTOR

wDescriptorID Zero
and

Interface

Length of
parameter block

Parameter block

10100010B Zero
and

Endpoint

Bit D7 of the bmRequestType field specifies that this is a Get request (D7 = 0b1). It is a class-specific request

(D6..5 = 0b01), directed to either an interface (AudioControl or AudioStreaming) of the Audio Function

(D4..0 = 0b00001) or the isochronous endpoint of an AudioStreaming interface (D4..0 = 0b00010).

The bRequest field indicates that a class-specific descriptor is targeted.

The wValue field specifies the descriptor’s wDescriptorID value.

When the request addresses an interface (bmRequestType = 10100001), the wIndex field specifies the interface in

the low byte and zero in the high byte.

When the request addresses an endpoint (bmRequestType = 10100010), the wIndex field specifies the endpoint

to be addressed in the low byte and zero in the high byte.

The values in the wValue and wIndex fields shall be appropriate to the recipient. Only existing wDescriptorID

values can be used and only appropriate interface or endpoint numbers may be used. If the request specifies an

unknown wDescriptorID value or an unknown interface or endpoint number, the control pipe shall indicate a stall.

The length of the descriptor to return is indicated in the wLength field of the request. If the descriptor is longer

than what is indicated in the wLength field, only the initial bytes of the descriptor are returned. If the descriptor is

shorter than what is indicated in the wLength field, the device indicates the end of the control transfer by sending

a short packet when further data is requested.

The layout of the parameter block follows the High Capability descriptor definitions as outlined in Section 4.2,

“Class-Specific Descriptors.”

Release 3.0 September 22, 2016 135

6 INTERRUPTS

Interrupts are used as a means to inform the Host that a change has occurred in the current state of the Audio

Function. This specification currently defines two different types of interrupts:

 Memory Change: Some internal Entity’s memory location has been updated. Host software can be notified so

that the appropriate action can be taken.

 Control Change: Some addressable Control inside the Audio Function changed one or more of its attribute

values.

The Audio Controls inside a Clock Entity, Unit, Terminal or Power Domain can be the source of an interrupt.

Likewise, any addressable Control inside the AudioControl interface or any of the AudioStreaming interfaces can

generate an interrupt. Finally, all addressable Controls related to an audio endpoint can be the cause of an

interrupt.

A change of state in the Audio Function is most often caused by a certain event that takes place. An event can

either be user-initiated or device-initiated. User-initiated connector insertion or removal is a typical example of a

user-initiated event. The Host could then switch selectors or mixers so as to play audio out of the just inserted

device (e.g. a headphone) and stop playing audio out of the current device (e.g. a speaker set).

An example of a device-initiated event could be the following: An external device (e.g. an A/V receiver) could

switch from PCM to AC-3 encoded data on its optical digital output, depending on the material that is currently

being played. If this device is connected to the optical digital input of an Audio Function that has auto-detect

capabilities, the interface on that Audio Function might need to be reconfigured (e.g. to start the AC-3 decoding

process), maybe causing all other interfaces to change some aspect of their format, or even become unusable. The

device could issue an interrupt, letting the Host know that the Audio Function needs reconfiguration.

6.1 INTERRUPT DATA MESSAGE

The actual type of interrupt (Memory Change, Control Change, Descriptor Change) and its originator is conveyed to

the Host through the interrupt data message that is sent over the interrupt endpoint. It is then the responsibility of

the Host to query the Audio Function for more detailed information about the cause of the interrupt through a Get

Memory request or one of the Get Control or Get Descriptor requests as defined in Section 5.2, “Class-Specific

Requests”.

Note that if the Host directly changes the CUR attribute on any Control, that Control shall not generate an

interrupt. Likewise, if the Host directly modifies a memory location within an Entity, that change shall not generate

an interrupt.

Interrupts are considered to be of the ‘edge-triggered’ type, meaning that an interrupt is generated whenever an

event occurs, but there is no specific action required from the Host to clear the interrupt condition. When the Host

issues a Get request in response to the interrupt, the most current value of the addressed Control’s attribute will

be returned.

The interrupt data message is always 6 bytes in length. The first bInfo field is required for all interrupt data

messages. It contains information in D0 indicating whether this is a vendor-specific interrupt (D0 = 0b1) or a class-

specific interrupt (D0 = 0b0). Bit D1 indicates whether the interrupt originated from an interface (D1 = 0b0) or an

endpoint (D1 = 0b1). Bits D7..2 of the bInfo field are reserved. For vendor-specific interrupts, the layout of the

remainder of the interrupt message is undefined. For class-specific interrupts, the layout is defined as follows.

Release 3.0 September 22, 2016 136

When the interrupt originates from an Entity in an interface (D1 = 0b0 in the bInfo field), the wIndex field specifies

the interface in the low byte and the Entity ID (Clock Entity ID, Unit ID, Terminal ID, or Power Domain ID). For

indicating the interface itself, an Entity ID of zero shall be specified in the high byte.

When the interrupt originates from an endpoint (D1 = 0b1 in the bInfo field), the wIndex field specifies the

endpoint to be addressed in the low byte and zero in the high byte.

The wValue field interpretation is qualified by the value in the wIndex field. The layout of the wValue field changes

depending on the addressed Entity. The wValue field follows exactly the same rules as outlined in Section 5,

“Requests” for each of the supported Get Control requests. The wValue field returns the Control Selector (CS) in

the high byte and the Channel Number (CN) in the low byte. The Control Selector and the Channel Number (CN)

together indicate exactly which Control generated the interrupt. If a Control is channel-independent, then the

Control is considered to be a master Control and the virtual channel zero is returned to indicate it (CN = 0).

There are two exceptions to the above. The first is when a Mixer Unit Control request returns

CS = MU_MIXER_CONTROL in the high byte. Then the Mixer Control Number (MCN) is returned in the low byte.

The second is the Memory request where the wValue field specifies a zero-based offset value that indicates the

address of the location in the Entity’s memory space that generated the interrupt. If the offset value is zero, this

indicates that multiple memory locations might have changed and the entire memory space needs to be examined.

The bSourceType field contains a constant, identifying the specific source type (attribute of the addressed Control

or Entity, String, or High Capability descriptor) is causing the interrupt. Possible source types are:

 Current setting attribute (CUR)

 Range attribute (RANGE)

 Memory space attribute (MEM)

 String (STRING)

 High Capability Descriptor (HIGH_CAPABILITY_DESCRIPTOR)

When there are no interrupts pending, the interrupt endpoint shall NAK when polled.

The following table specifies the format of the interrupt message when D0 = 0b0:

Table 6-1: Interrupt Data Message Format

Offset Field Size Value Description

0 bInfo 1 Bitmap D0: Vendor-specific.

D1: Interface or Endpoint

D7..2: Reserved.

1 bSourceType 1 Constant The source type that caused the interrupt

2 wValue 2 Number CS in the high byte and CN or MCN in the
low byte for CUR and RANGE source type.
Zero-based offset into memory space for
MEM source type. wStrDescrID value for
String source type. wDescriptorID value for
High Capability Descriptor source type.

4 wIndex 2 Number Entity ID or zero in the high byte and
Interface or Endpoint in the low byte.

Release 3.0 September 22, 2016 137

6.2 INTERRUPT SOURCES

Any Control, High Capability descriptor, class-specific String descriptor, or memory location within an addressable

Entity of the Audio Function can be the source of an interrupt. The interrupt message contains enough information

to determine exactly which Control or memory location caused the interrupt. The Host can then issue the normal

Control or Memory requests to further qualify the cause of the interrupt.

Release 3.0 September 22, 2016 138

APPENDIX A. AUDIO DEVICE CLASS CODES

A.1 AUDIO FUNCTION CLASS CODE

Table A-1: Audio Function Class Code

Audio Function Class Code Value

AUDIO_FUNCTION AUDIO

A.2 AUDIO FUNCTION SUBCLASS CODES

Table A-2: Audio Function Subclass Codes

Audio Function Subclass Code Value

FUNCTION_SUBCLASS_UNDEFINED 0x00

FULL_ADC_3_0 0x01

GENERIC_I/O 0x20

HEADPHONE 0x21

SPEAKER 0x22

MICROPHONE 0x23

HEADSET 0x24

HEADSET_ADAPTER 0x25

SPEAKERPHONE 0x26

A.3 AUDIO FUNCTION PROTOCOL CODES

Table A-3: Audio Function Protocol Codes

Audio Function Protocol Code Value

FUNCTION_PROTOCOL_UNDEFINED 0x00

AF_VERSION_01_00 IP_VERSION_01_00

AF_VERSION_02_00 IP_VERSION_02_00

AF_VERSION_03_00 IP_VERSION_03_00

A.4 AUDIO INTERFACE CLASS CODE

Table A-4: Audio Interface Class Code

Audio Interface Class Code Value

AUDIO 0x01

Release 3.0 September 22, 2016 139

A.5 AUDIO INTERFACE SUBCLASS CODES

Table A-5: Audio Interface Subclass Codes

Audio Interface Subclass Code Value

INTERFACE_SUBCLASS_UNDEFINED 0x00

AUDIOCONTROL 0x01

AUDIOSTREAMING 0x02

MIDISTREAMING 0x03

A.6 AUDIO INTERFACE PROTOCOL CODES

Table A-6: Audio Interface Protocol Codes

Audio Interface Protocol Code Value

IP_VERSION_01_00 0x00

IP_VERSION_02_00 0x20

IP_VERSION_03_00 0x30

A.7 AUDIO FUNCTION CATEGORY CODES

Table A-7: Audio Function Category Codes

Audio Function Subclass Code Value

FUNCTION_SUBCLASS_UNDEFINED 0x00

DESKTOP_SPEAKER 0x01

HOME_THEATER 0x02

MICROPHONE 0x03

HEADSET 0x04

TELEPHONE 0x05

CONVERTER 0x06

VOICE/SOUND_RECORDER 0x07

I/O_BOX 0x08

MUSICAL_INSTRUMENT 0x09

PRO-AUDIO 0x0A

AUDIO/VIDEO 0x0B

CONTROL_PANEL 0x0C

HEADPHONE 0x0D

GENERIC_SPEAKER 0x0E

HEADSET_ADAPTER 0x0F

SPEAKERPHONE 0x10

Reserved 0x11..0xFE

Release 3.0 September 22, 2016 140

Audio Function Subclass Code Value

OTHER 0xFF

A.8 AUDIO CLASS-SPECIFIC DESCRIPTOR TYPES

Table A-8: Audio Class-specific Descriptor Types

Descriptor Type Value

CS_UNDEFINED 0x20

CS_DEVICE 0x21

CS_CONFIGURATION 0x22

CS_STRING 0x23

CS_INTERFACE 0x24

CS_ENDPOINT 0x25

CS_CLUSTER 0x26

A.9 CLUSTER DESCRIPTOR SUBTYPES

Table A-9: Audio Class-Specific Cluster Descriptor Subtypes

Descriptor Subtype Value

SUBTYPE_UNDEFINED 0x00

A.10 CLUSTER DESCRIPTOR SEGMENT TYPES

Table A-10: Cluster Descriptor Segment Types

Segment Type Value

SEGMENT_UNDEFINED 0x00

CLUSTER_DESCRIPTION 0x01

CLUSTER_VENDOR_DEFINED 0x1F

CHANNEL_INFORMATION 0x20

CHANNEL_AMBISONIC 0x21

CHANNEL_DESCRIPTION 0x22

CHANNEL_VENDOR_DEFINED 0xFE

END_SEGMENT 0xFF

A.11 CHANNEL PURPOSE DEFINITIONS

Table A-11: Channel Purpose Definitions

Channel Purpose Value

PURPOSE_UNDEFINED 0x00

GENERIC_AUDIO 0x01

Release 3.0 September 22, 2016 141

Channel Purpose Value

VOICE 0x02

SPEECH 0x03

AMBIENT 0x04

REFERENCE 0x05

ULTRASONIC 0x06

VIBROKINETIC 0x07

NON_AUDIO 0xFF

A.12 CHANNEL RELATIONSHIP DEFINITIONS

Table A-12: Channel Relationship Definitions

USB Audio Channel Relationship CEA-861.2 Channel Allocation

Description Acronym Description Acronym

RELATIONSHIP_UNDEFINED UND --- ---

MONO M --- ---

LEFT L --- ---

RIGHT R --- ---

ARRAY AR --- ---

PATTERN_X PX --- ---

PATTERN_Y PY --- ---

PATTERN_A PA --- ---

PATTERN_B PB --- ---

PATTERN_M PM --- ---

PATTERN_S PS --- ---

Front Left FL Front Left FL

Front Right FR Front Right FR

Front Center FC Front Center FC

Front Left of Center FLC Front Left of Center FLc

Front Right of Center FRC Front Right of Center FRc

Front Wide Left FWL Front left Wide FLw

Front Wide Right FWR Front Right Wide FRw

Side Left SL Side Left SiL

Side Right SR Side Right SiR

Surround Array Left SAL Left Surround LS

Surround Array Right SAR Right Surround RS

Release 3.0 September 22, 2016 142

Back Left BL Back Left BL

Back Right BR Back Right BR

Back Center BC Back Center BC

Back Left of Center BLC --- ---

Back Right of Center BRC --- ---

Back Wide Left BWL --- ---

Back Wide Right BWR --- ---

Top Center TC Top Center TpC

Top Front Left TFL Top Front Left TpFL

Top Front Right TFR Top Front Right TpFR

Top Front Center TFC Top Front Center TpFC

Top Front Left of Center TFLC --- ---

Top Front Right of Center TFRC --- ---

Top Front Wide Left TFWL --- ---

Top Front Wide Right TFWR --- ---

Top Side Left TSL Top Side Left TpSiL

Top Side Right TSR Top Side Right TpSiR

Top Surround Array Left TSAL Top Left Surround TpLS

Top Surround Array Right TSAR Top Right Surround TpRS

Top Back Left TBL Top Back Left TpBL

Top Back Right TBR Top Back Right TpBR

Top Back Center TBC Top Back Center TpBC

Top Back Left Of Center TBLC --- ---

Top Back Right Of Center TBRC --- ---

Top Back Wide Left TBWL --- ---

Top Back Wide Right TBWR --- ---

Bottom Center BC --- ---

Bottom Front Left BFL Bottom Front Left BtFL

Bottom Front Right BFR Bottom Front Right BtFR

Bottom Front Center BFC Bottom Front Center BtFC

Bottom Front Left Of Center BFLC --- ---

Bottom Front Right Of Center BFRC --- ---

Bottom Front Wide Left BFWL --- ---

Bottom Front Wide Right BFWR --- ---

Bottom Side Left BSL --- ---

Bottom Side Right BSR --- ---

Bottom Surround Array Left BSAL --- ---

Release 3.0 September 22, 2016 143

A.13 AMBISONIC COMPONENT ORDERING CONVENTION TYPES

Table A-13: Ambisonic Component Ordering Convention Types

Ambisonic Component Ordering Convention Type Value

ORD_TYPE_UNDEFINED 0x00

AMBISONIC_CHANNEL_NUMBER (ACN) 0x01

FURSE_MALHAM 0x02

SINGLE_INDEX DESIGNATION (SID) 0x03

A.14 AMBISONIC NORMALIZATION TYPES

Table A-14: Ambisonic Normalization Types

Ambisonic Normalization Type Value

NORM_TYPE_UNDEFINED 0x00

maxN 0x01

SN3D 0x02

N3D 0x03

SN2D 0x04

N2D 0x05

Bottom Surround Array Right BSAR --- ---

Bottom Back Left BBL --- ---

Bottom Back Right BBR --- ---

Bottom Back Center BBC --- ---

Bottom Back Left Of Center BBLC --- ---

Bottom Back Right Of Center BBRC --- ---

Bottom Back Wide Left BBWL --- ---

Bottom Back Wide Right BBWR --- ---

Low Frequency Effects LFE Low Frequency Effects 1 LFE1

Low Frequency Effects Left LFEL --- ---

Low Frequency Effects Right LFER Low Frequency Effects 2 LFE2

Headphone Left HPL --- ---

Headphone Right HPR --- ---

Release 3.0 September 22, 2016 144

A.15 AUDIO CLASS-SPECIFIC AC INTERFACE DESCRIPTOR SUBTYPES

Table A-15: Audio Class-Specific AC Interface Descriptor Subtypes

Descriptor Subtype Value

AC_DESCRIPTOR_UNDEFINED 0x00

HEADER 0x01

INPUT_TERMINAL 0x02

OUTPUT_TERMINAL 0x03

EXTENDED_TERMINAL 0x04

MIXER_UNIT 0x05

SELECTOR_UNIT 0x06

FEATURE_UNIT 0x07

EFFECT_UNIT 0x08

PROCESSING_UNIT 0x09

EXTENSION_UNIT 0x0A

CLOCK_SOURCE 0x0B

CLOCK_SELECTOR 0x0C

CLOCK_MULTIPLIER 0x0D

SAMPLE_RATE_CONVERTER 0x0E

CONNECTORS 0x0F

POWER_DOMAIN 0x10

A.16 AUDIO CLASS-SPECIFIC AS INTERFACE DESCRIPTOR SUBTYPES

Table A-16: Audio Class-Specific AS Interface Descriptor Subtypes

Descriptor Subtype Value

AS_DESCRIPTOR_UNDEFINED 0x00

AS_GENERAL 0x01

AS_VALID_FREQ_RANGE 0x02

A.17 AUDIO CLASS-SPECIFIC STRING DESCRIPTOR SUBTYPES

Table A-17: Audio Class-Specific String descriptor Subtypes

Descriptor Subtype Value

SUBTYPE_UNDEFINED 0x00

Release 3.0 September 22, 2016 145

A.18 EXTENDED TERMINAL SEGMENT TYPES

Table A-18: Extended Terminal Segment Types

Segment Type Value

SEGMENT_UNDEFINED 0x00

TERMINAL_VENDOR_DEFINED 0x1F

CHANNEL_BANDWIDTH 0x20

CHANNEL_MAGNITUDE_RESPONSE 0x21

CHANNEL_MAGNITUDE/PHASE_RESPONSE 0x22

CHANNEL_POSITION_XYZ 0x23

CHANNEL_POSITION_ RΘΦ 0x24

CHANNEL_VENDOR_DEFINED 0xFE

END_SEGMENT 0xFF

A.19 EFFECT UNIT EFFECT TYPES

Table A-19: Effect Unit Effect Types

wEffectType Value

EFFECT_UNDEFINED 0x0000

PARAM_EQ_SECTION_EFFECT 0x0001

REVERBERATION_EFFECT 0x0002

MOD_DELAY_EFFECT 0x0003

DYN_RANGE_COMP_EFFECT 0x0004

A.20 PROCESSING UNIT PROCESS TYPES

Table A-20: Processing Unit Process Types

wProcessType Value

PROCESS_UNDEFINED 0x0000

UP/DOWNMIX_PROCESS 0x0001

STEREO_EXTENDER_PROCESS 0x0002

MULTI_FUNCTION_PROCESS 0x0003

A.21 AUDIO CLASS-SPECIFIC ENDPOINT DESCRIPTOR SUBTYPES

Table A-21: Audio Class-Specific Endpoint Descriptor Subtypes

Descriptor Subtype Value

DESCRIPTOR_UNDEFINED 0x00

EP_GENERAL 0x01

Release 3.0 September 22, 2016 146

A.22 AUDIO CLASS-SPECIFIC REQUEST CODES

Table A-22: Audio Class-Specific Request Codes

Class-Specific Request Code Value

REQUEST_CODE_UNDEFINED 0x00

CUR 0x01

RANGE 0x02

MEM 0x03

INTEN 0x04

STRING 0x05

HIGH_CAPABILITY_DESCRIPTOR 0x06

A.23 CONTROL SELECTOR CODES

A.23.1 AUDIOCONTROL INTERFACE CONTROL SELECTORS

Table A-23: AudioControl Interface Control Selectors

Control Selector Value

AC_CONTROL_UNDEFINED 0x00

AC_ACTIVE_INTERFACE_CONTROL 0x01

AC_POWER_DOMAIN_CONTROL 0x02

A.23.2 CLOCK SOURCE CONTROL SELECTORS

Table A-24: Clock Source Control Selectors

Control Selector Value

CS_CONTROL_UNDEFINED 0x00

CS_SAM_FREQ_CONTROL 0x01

CS_CLOCK_VALID_CONTROL 0x02

A.23.3 CLOCK SELECTOR CONTROL SELECTORS

Table A-25: Clock Selector Control Selectors

Control Selector Value

CX_CONTROL_UNDEFINED 0x00

CX_CLOCK_SELECTOR_CONTROL 0x01

A.23.4 CLOCK MULTIPLIER CONTROL SELECTORS

Table A-26: Clock Multiplier Control Selectors

Control Selector Value

CM_CONTROL_UNDEFINED 0x00

Release 3.0 September 22, 2016 147

Control Selector Value

CM_NUMERATOR_CONTROL 0x01

CM_DENOMINATOR_CONTROL 0x02

A.23.5 TERMINAL CONTROL SELECTORS

Table A-27: Terminal Control Selectors

Control Selector Value

TE_CONTROL_UNDEFINED 0x00

TE_INSERTION_CONTROL 0x01

TE_OVERLOAD_CONTROL 0x02

TE_UNDERFLOW_CONTROL 0x03

TE_OVERFLOW_CONTROL 0x04

TE_LATENCY_CONTROL 0x05

A.23.6 MIXER CONTROL SELECTORS

Table A-28: Mixer Control Selectors

Control Selector Value

MU_CONTROL_UNDEFINED 0x00

MU_MIXER_CONTROL 0x01

MU_UNDERFLOW_CONTROL 0x02

MU_OVERFLOW_CONTROL 0x03

MU_LATENCY_CONTROL 0x04

A.23.7 SELECTOR CONTROL SELECTORS

Table A-29: Selector Control Selectors

Control Selector Value

SU_CONTROL_UNDEFINED 0x00

SU_SELECTOR_CONTROL 0x01

SU_LATENCY_CONTROL 0x02

A.23.8 FEATURE UNIT CONTROL SELECTORS

Table A-30: Feature Unit Control Selectors

Control Selector Value

FU_CONTROL_UNDEFINED 0x00

FU_MUTE_CONTROL 0x01

FU_VOLUME_CONTROL 0x02

FU_BASS_CONTROL 0x03

Release 3.0 September 22, 2016 148

Control Selector Value

FU_MID_CONTROL 0x04

FU_TREBLE_CONTROL 0x05

FU_GRAPHIC_EQUALIZER_CONTROL 0x06

FU_AUTOMATIC_GAIN_CONTROL 0x07

FU_DELAY_CONTROL 0x08

FU_BASS_BOOST_CONTROL 0x09

FU_LOUDNESS_CONTROL 0x0A

FU_INPUT_GAIN_CONTROL 0x0B

FU_INPUT_GAIN_PAD_CONTROL 0x0C

FU_PHASE_INVERTER_CONTROL 0x0D

FU_UNDERFLOW_CONTROL 0x0E

FU_OVERFLOW_CONTROL 0x0F

FU_LATENCY_CONTROL 0x10

A.23.9 EFFECT UNIT CONTROL SELECTORS

A.23.9.1 PARAMETRIC EQUALIZER SECTION EFFECT UNIT CONTROL SELECTORS
Table A-31: Reverberation Effect Unit Control Selectors

Control Selector Value

PE_CONTROL_UNDEFINED 0x00

PE_ENABLE_CONTROL 0x01

PE_CENTERFREQ_CONTROL 0x02

PE_QFACTOR_CONTROL 0x03

PE_GAIN_CONTROL 0x04

PE_UNDERFLOW_CONTROL 0x05

PE_OVERFLOW_CONTROL 0x06

PE_LATENCY_CONTROL 0x07

A.23.9.2 REVERBERATION EFFECT UNIT CONTROL SELECTORS
Table A-32: Reverberation Effect Unit Control Selectors

Control Selector Value

RV_CONTROL_UNDEFINED 0x00

RV_ENABLE_CONTROL 0x01

RV_TYPE_CONTROL 0x02

RV_LEVEL_CONTROL 0x03

RV_TIME_CONTROL 0x04

Release 3.0 September 22, 2016 149

Control Selector Value

RV_FEEDBACK_CONTROL 0x05

RV_PREDELAY_CONTROL 0x06

RV_DENSITY_CONTROL 0x07

RV_HIFREQ_ROLLOFF_CONTROL 0x08

RV_UNDERFLOW_CONTROL 0x09

RV_OVERFLOW_CONTROL 0x0A

RV_LATENCY_CONTROL 0x0B

A.23.9.3 MODULATION DELAY EFFECT UNIT CONTROL SELECTORS
Table A-33: Modulation Delay Effect Unit Control Selectors

Control Selector Value

MD_CONTROL_UNDEFINED 0x00

MD_ENABLE_CONTROL 0x01

MD_BALANCE_CONTROL 0x02

MD_RATE_CONTROL 0x03

MD_DEPTH_CONTROL 0x04

MD_TIME_CONTROL 0x05

MD_FEEDBACK_CONTROL 0x06

MD_UNDERFLOW_CONTROL 0x07

MD_OVERFLOW_CONTROL 0x08

MD_LATENCY_CONTROL 0x09

A.23.9.4 DYNAMIC RANGE COMPRESSOR EFFECT UNIT CONTROL SELECTORS
Table A-34: Dynamic Range Compressor Effect Unit Control Selectors

Control Selector Value

DR_CONTROL_UNDEFINED 0x00

DR_ENABLE_CONTROL 0x01

DR_COMPRESSION_RATE_CONTROL 0x02

DR_MAXAMPL_CONTROL 0x03

DR_THRESHOLD_CONTROL 0x04

DR_ATTACK_TIME_CONTROL 0x05

DR_RELEASE_TIME_CONTROL 0x06

DR_UNDERFLOW_CONTROL 0x07

DR_OVERFLOW_CONTROL 0x08

DR_LATENCY_CONTROL 0x09

Release 3.0 September 22, 2016 150

A.23.10 PROCESSING UNIT CONTROL SELECTORS

A.23.10.1 UP/DOWN-MIX PROCESSING UNIT CONTROL SELECTORS
Table A-35: Up/Down-mix Processing Unit Control Selectors

Control Selector Value

UD_CONTROL_UNDEFINED 0x00

UD_MODE_SELECT_CONTROL 0x01

UD_UNDERFLOW_CONTROL 0x02

UD_OVERFLOW_CONTROL 0x03

UD_LATENCY_CONTROL 0x04

A.23.10.2 STEREO EXTENDER PROCESSING UNIT CONTROL SELECTORS
Table A-36: Stereo Extender Processing Unit Control Selectors

Control Selector Value

ST_EXT_CONTROL_UNDEFINED 0x00

ST_EXT_WIDTH_CONTROL 0x01

ST_EXT_UNDERFLOW_CONTROL 0x02

ST_EXT_OVERFLOW_CONTROL 0x03

ST_EXT_LATENCY_CONTROL 0x04

A.23.11 EXTENSION UNIT CONTROL SELECTORS

Table A-37: Extension Unit Control Selectors

Control Selector Value

XU_CONTROL_UNDEFINED 0x00

XU_UNDERFLOW_CONTROL 0x01

XU_OVERFLOW_CONTROL 0x02

XU_LATENCY_CONTROL 0x03

A.23.12 AUDIOSTREAMING INTERFACE CONTROL SELECTORS

Table A-38: AudioStreaming Interface Control Selectors

Control Selector Value

AS_CONTROL_UNDEFINED 0x00

AS_ACT_ALT_SETTING_CONTROL 0x01

AS_VAL_ALT_SETTINGS_CONTROL 0x02

AS_AUDIO_DATA_FORMAT_CONTROL 0x03

Release 3.0 September 22, 2016 151

A.23.13 ENDPOINT CONTROL SELECTORS

Table A-39: Endpoint Control Selectors

Control Selector Value

EP_CONTROL_UNDEFINED 0x00

EP_PITCH_CONTROL 0x01

EP_DATA_OVERRUN_CONTROL 0x02

EP_DATA_UNDERRUN_CONTROL 0x03

A.24 CONNECTOR TYPES

Table A-40: Connector Types

Connector Type Value

UNDEFINED 0x00

2.5 MM PHONE CONNECTOR 0x01

3.5 MM PHONE CONNECTOR 0x02

6.35 MM PHONE CONNECTOR 0x03

XLR/6.35MM COMBO CONNECTOR 0x04

XLR 0x05

OPTICAL/3.5MM COMBO CONNECTOR 0x06

RCA 0x07

BNC 0x08

BANANA 0x09

BINDING POST 0x0A

SPEAKON 0x0B

SPRING CLIP 0x0C

SCREW TYPE 0x0D

DIN 0x0E

MINI DIN 0x0F

EUROBLOCK 0x10

USB TYPE-C 0x11

RJ-11 0x12

RJ-45 0x13

TOSLINK 0x14

HDMI 0x15

Mini-HDMI 0x16

Micro-HDMI 0x17

DP 0x18

Release 3.0 September 22, 2016 152

Connector Type Value

MINI-DP 0x19

D-SUB 0x1A

THUNDERBOLT 0x1B

LIGHTNING 0x1C

WIRELESS 0x1D

USB STANDARD A 0x1E

USB STANDARD B 0x1F

USB MINI-B 0x20

USB MICRO-B 0x21

USB MICRO-AB 0x22

USB 3.0 MICRO-B 0x23

OTHER (CONNECTOR TYPE NOT IN THIS LIST) 0xFF

	Scope of This Release
	Contributors
	Revision History
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Scope
	1.2 Purpose
	1.3 Related Documents
	1.4 Terms and Abbreviations

	2 Management Overview
	2.1 Overview of Key Differences between ADC v2.0 and v3.0

	3 Functional Characteristics
	3.1 Introduction
	3.2 Basic Audio Device Definition
	3.3 Backwards Compatibility
	3.4 Audio Interface Association (AIA) and Interface Association Descriptor
	3.4.1 Audio Function Class
	3.4.2 Audio Function Subclass
	3.4.3 Audio Function Protocol

	3.5 Audio Interface Class
	3.6 Audio Interface Subclass
	3.7 Audio Interface Protocol
	3.8 Audio Function Category
	3.9 Clock Domains
	3.10 Power Domains
	3.11 Audio Synchronization Types
	3.11.1 Asynchronous
	3.11.2 Synchronous
	3.11.3 Adaptive
	3.11.4 Implications of the Different Synchronization Types
	3.11.4.1 Single direction Sink Endpoint
	3.11.4.2 Single Direction Source Endpoint
	3.11.4.3 Source and Sink Endpoints

	3.12 Inter Channel Synchronization
	3.13 Audio Function Topology
	3.13.1 Cluster
	3.13.2 Input Terminal
	3.13.3 Output Terminal
	3.13.4 Mixer Unit
	3.13.5 Selector Unit
	3.13.6 Feature Unit
	3.13.7 Sampling Rate Converter Unit
	3.13.8 Effect Unit
	3.13.8.1 Parametric Equalizer Section Effect Unit
	3.13.8.2 Reverberation Effect Unit
	3.13.8.3 Modulation Delay Effect Unit
	3.13.8.4 Dynamic Range Compressor Effect Unit

	3.13.9 Processing Unit
	3.13.9.1 Up/Down-mix Processing Unit
	3.13.9.2 Stereo Extender Processing Unit
	3.13.9.3 Multi-Function Processing Unit

	3.13.10 Extension Unit
	3.13.11 Clock Entities
	3.13.11.1 Clock Source
	3.13.11.2 Clock Selector
	3.13.11.3 Clock Multiplier

	3.14 Operational Model
	3.14.1 AudioControl Interface
	3.14.1.1 Control Endpoint
	3.14.1.2 Interrupt Endpoint

	3.14.2 AudioStreaming Interface
	3.14.2.1 Isochronous Audio Data Stream Endpoint
	3.14.2.2 Isochronous Feedback Endpoint
	3.14.2.3 Audio Data Format

	3.14.3 Clock Model
	3.14.4 Power Domains Model
	3.14.5 Additional Power Considerations and Requirements
	3.14.6 Binding between Physical Buttons and Audio Controls
	3.14.6.1 Physical button is a HID Control
	3.14.6.2 Physical button is Integral Part of the Audio Control

	4 Descriptors
	4.1 Standard Descriptors
	4.2 Class-Specific Descriptors
	4.2.1 Traditional Class-Specific Descriptors
	4.2.1.1 Common Fields in some Class-specific Descriptors
	4.2.1.1.1 bmControls Field

	4.2.2 High Capability Class-Specific Descriptors

	4.3 Cluster Descriptor
	4.3.1 Cluster Descriptor Header
	4.3.2 Cluster Descriptor Block
	4.3.2.1 Segments
	4.3.2.1.1 End Segment
	4.3.2.1.2 Common Block Segments
	4.3.2.1.2.1 Cluster Description Segment
	4.3.2.1.2.2 Vendor-defined Segment

	4.3.2.1.3 Channel Block Segments
	4.3.2.1.3.1 Information Segment
	4.3.2.1.3.2 Ambisonic Segment
	4.3.2.1.3.3 Channel Description Segment
	4.3.2.1.3.4 Vendor-defined Segment

	4.3.3 Example Cluster descriptor
	4.3.4 CEA-861.2 Channel Mapping

	4.4 Physical versus Logical Cluster
	4.4.1 Mapping between Physical and Logical Clusters
	4.4.1.1 AudioStreaming OUT interface – Input Terminal
	4.4.1.2 AudioStreaming IN interface – Output Terminal

	4.5 AudioControl Interface Descriptors
	4.5.1 Standard AC Interface Descriptor
	4.5.2 Class-Specific AC Interface Descriptor
	4.5.2.1 Input Terminal Descriptor
	4.5.2.2 Output Terminal Descriptor
	4.5.2.3 Extended Terminal Descriptor
	4.5.2.3.1 Extended Terminal Descriptor Header
	4.5.2.3.2 Extended Terminal Descriptor Block
	4.5.2.3.3 Segments
	4.5.2.3.3.1 End Segment
	4.5.2.3.3.2 Common Block Segments
	4.5.2.3.3.2.1 Vendor-defined Segment

	4.5.2.3.3.3 Channel Block Segments
	4.5.2.3.3.3.1 Bandwidth Segment
	4.5.2.3.3.3.2 Magnitude Response
	4.5.2.3.3.3.3 Magnitude/Phase Response
	4.5.2.3.3.3.4 Position_XYZ Segment
	4.5.2.3.3.3.5 Position_RΘΦ Segment
	4.5.2.3.3.3.6 Vendor-defined Segment

	4.5.2.4 Connectors Descriptor
	4.5.2.5 Mixer Unit Descriptor
	4.5.2.6 Selector Unit Descriptor
	4.5.2.7 Feature Unit Descriptor
	4.5.2.8 Sampling Rate Converter Unit Descriptor
	4.5.2.9 Effect Unit Descriptor
	4.5.2.9.1 Parametric Equalizer Section Effect Unit Descriptor
	4.5.2.9.2 Reverberation Effect Unit Descriptor
	4.5.2.9.3 Modulation Delay Effect Unit Descriptor
	4.5.2.9.4 Dynamic Range Compressor Effect Unit Descriptor

	4.5.2.10 Processing Unit Descriptor
	4.5.2.10.1 Up/Down-mix Processing Unit Descriptor
	4.5.2.10.2 Stereo Extender Processing Unit Descriptor
	4.5.2.10.3 Multi-Function Processing Unit Descriptor

	4.5.2.11 Extension Unit Descriptor
	4.5.2.12 Clock Source Descriptor
	4.5.2.13 Clock Selector Descriptor
	4.5.2.14 Clock Multiplier Descriptor
	4.5.2.15 Power Domain Descriptor

	4.6 AudioControl Endpoint Descriptors
	4.6.1 AC Control Endpoint Descriptors
	4.6.1.1 Standard AC Control Endpoint Descriptor
	4.6.1.2 Class-Specific AC Control Endpoint Descriptor

	4.6.2 AC Interrupt Endpoint Descriptors
	4.6.2.1 Standard AC Interrupt Endpoint Descriptor
	4.6.2.2 Class-Specific AC Interrupt Endpoint Descriptor

	4.7 AudioStreaming Interface Descriptors
	4.7.1 Standard AS Interface Descriptor
	4.7.2 Class-Specific AS Interface Descriptor
	4.7.3 Class-Specific AS Valid Frequency Range Descriptor

	4.8 AudioStreaming Endpoint Descriptors
	4.8.1 AS Isochronous Audio Data Endpoint Descriptors
	4.8.1.1 Standard AS Isochronous Audio Data Endpoint Descriptor
	4.8.1.2 Class-Specific AS Isochronous Audio Data Endpoint Descriptor

	4.8.2 AS Isochronous Feedback Endpoint Descriptor
	4.8.2.1 Standard AS Isochronous Feedback Endpoint Descriptor
	4.8.2.2 Class-Specific AS Isochronous Feedback Endpoint Descriptor

	4.9 Class-specific String descriptors

	5 Requests
	5.1 Standard Requests
	5.2 Class-Specific Requests
	5.2.1 AudioControl Requests
	5.2.1.1 Control Attributes
	5.2.1.2 Control Request Layout
	5.2.1.3 Control Request Parameter Block Layout
	5.2.1.3.1 Layout 1 Parameter Block
	5.2.1.3.2 Layout 2 Parameter Block
	5.2.1.3.3 Layout 3 Parameter Block
	5.2.1.3.4 INTEN Parameter Block

	5.2.1.4 Common Controls
	5.2.1.4.1 Enable Control
	5.2.1.4.2 Underflow Control
	5.2.1.4.3 Overflow Control
	5.2.1.4.4 Power Domain Control

	5.2.1.5 Interface Control Requests
	5.2.1.5.1 Latency Control

	5.2.1.6 Terminal Control Request
	5.2.1.6.1 Insertion Control
	5.2.1.6.2 Overload Control
	5.2.1.6.3 Underflow Control
	5.2.1.6.4 Overflow Control

	5.2.1.7 Mixer Unit Control Request
	5.2.1.7.1 Mixer Control
	5.2.1.7.2 Underflow Control
	5.2.1.7.3 Overflow Control

	5.2.1.8 Selector Unit Control Request
	5.2.1.8.1 Selector Control

	5.2.1.9 Feature Unit Control Request
	5.2.1.9.1 Mute Control
	5.2.1.9.2 Volume Control
	5.2.1.9.3 Bass Control
	5.2.1.9.4 Mid Control
	5.2.1.9.5 Treble Control
	5.2.1.9.6 Graphic Equalizer Control
	5.2.1.9.7 Automatic Gain Control
	5.2.1.9.8 Delay Control
	5.2.1.9.9 Bass Boost Control
	5.2.1.9.10 Loudness Control
	5.2.1.9.11 Input Gain Control
	5.2.1.9.12 Input Gain Pad Control
	5.2.1.9.13 Phase Inverter Control
	5.2.1.9.14 Underflow Control
	5.2.1.9.15 Overflow Control

	5.2.1.10 Effect Unit Control Request
	5.2.1.10.1 Parametric Equalizer Section Effect Unit
	5.2.1.10.1.1 Enable Control
	5.2.1.10.1.2 Center Frequency Control
	5.2.1.10.1.3 QFactor Control
	5.2.1.10.1.4 Gain Control
	5.2.1.10.1.5 Underflow Control
	5.2.1.10.1.6 Overflow Control

	5.2.1.10.2 Reverberation Effect Unit
	5.2.1.10.2.1 Enable Control
	5.2.1.10.2.2 Type Control
	5.2.1.10.2.3 Level Control
	5.2.1.10.2.4 Time Control
	5.2.1.10.2.5 Delay Feedback Control
	5.2.1.10.2.6 Pre-Delay Control
	5.2.1.10.2.7 Density Control
	5.2.1.10.2.8 Hi-Freq Roll-Off Control
	5.2.1.10.2.9 Underflow Control
	5.2.1.10.2.10 Overflow Control

	5.2.1.10.3 Modulation Delay Effect Unit
	5.2.1.10.3.1 Enable Control
	5.2.1.10.3.2 Balance Control
	5.2.1.10.3.3 Rate Control
	5.2.1.10.3.4 Depth Control
	5.2.1.10.3.5 Time Control
	5.2.1.10.3.6 Feedback Level Control
	5.2.1.10.3.7 Underflow Control
	5.2.1.10.3.8 Overflow Control

	5.2.1.10.4 Dynamic Range Compressor Effect Unit
	5.2.1.10.4.1 Enable Control
	5.2.1.10.4.2 Compression Ratio Control
	5.2.1.10.4.3 MaxAmpl Control
	5.2.1.10.4.4 Threshold Control
	5.2.1.10.4.5 Attack Time Control
	5.2.1.10.4.6 Release Time Control
	5.2.1.10.4.7 Underflow Control
	5.2.1.10.4.8 Overflow Control

	5.2.1.11 Processing Unit Control Request
	5.2.1.11.1 Up/Down-mix Processing Unit
	5.2.1.11.1.1 Mode Select Control
	5.2.1.11.1.2 Underflow Control
	5.2.1.11.1.3 Overflow Control

	5.2.1.11.2 Stereo Extender Processing Unit
	5.2.1.11.2.1 Width Control
	5.2.1.11.2.2 Underflow Control
	5.2.1.11.2.3 Overflow Control

	5.2.1.12 Extension Unit Control Requests
	5.2.1.12.1.1 Underflow Control
	5.2.1.12.1.2 Overflow Control

	5.2.1.13 Clock Source Control Request
	5.2.1.13.1 Sampling Frequency Control
	5.2.1.13.2 Clock Validity Control

	5.2.1.14 Clock Selector Control Request
	5.2.1.14.1 Clock Selector Control

	5.2.1.15 Clock Multiplier Control Request
	5.2.1.15.1 Numerator Control
	5.2.1.15.2 Denominator Control

	5.2.2 AudioStreaming Requests
	5.2.2.1 Interface Control Requests
	5.2.2.1.1 Active Alternate Setting Control
	5.2.2.1.2 Valid Alternate Settings Control
	5.2.2.1.3 Audio Data Format Control

	5.2.2.2 Endpoint Control Request
	5.2.2.2.1 Pitch Control
	5.2.2.2.2 Data Overrun Control
	5.2.2.2.3 Data Underrun Control

	5.2.3 Additional Requests
	5.2.3.1 Memory Requests
	5.2.3.2 Class-specific String Request
	5.2.3.3 High Capability Descriptor Request

	6 Interrupts
	6.1 Interrupt Data Message
	6.2 Interrupt Sources

	Appendix A. Audio Device Class Codes
	A.1 Audio Function Class Code
	A.2 Audio Function Subclass Codes
	A.3 Audio Function Protocol Codes
	A.4 Audio Interface Class Code
	A.5 Audio Interface Subclass Codes
	A.6 Audio Interface Protocol Codes
	A.7 Audio Function Category Codes
	A.8 Audio Class-Specific Descriptor Types
	A.9 Cluster Descriptor Subtypes
	A.10 Cluster Descriptor Segment types
	A.11 Channel Purpose Definitions
	A.12 Channel Relationship Definitions
	A.13 Ambisonic Component Ordering Convention Types
	A.14 Ambisonic Normalization Types
	A.15 Audio Class-Specific AC Interface Descriptor Subtypes
	A.16 Audio Class-Specific AS Interface Descriptor Subtypes
	A.17 Audio Class-Specific String descriptor Subtypes
	A.18 Extended Terminal Segment Types
	A.19 Effect Unit Effect Types
	A.20 Processing Unit Process Types
	A.21 Audio Class-Specific Endpoint Descriptor Subtypes
	A.22 Audio Class-Specific Request Codes
	A.23 Control Selector Codes
	A.23.1 AudioControl Interface Control Selectors
	A.23.2 Clock Source Control Selectors
	A.23.3 Clock Selector Control Selectors
	A.23.4 Clock Multiplier Control Selectors
	A.23.5 Terminal Control Selectors
	A.23.6 Mixer Control Selectors
	A.23.7 Selector Control Selectors
	A.23.8 Feature Unit Control Selectors
	A.23.9 Effect Unit Control Selectors
	A.23.9.1 Parametric Equalizer Section Effect Unit Control Selectors
	A.23.9.2 Reverberation Effect Unit Control Selectors
	A.23.9.3 Modulation Delay Effect Unit Control Selectors
	A.23.9.4 Dynamic Range Compressor Effect Unit Control Selectors

	A.23.10 Processing Unit Control Selectors
	A.23.10.1 Up/Down-mix Processing Unit Control Selectors
	A.23.10.2 Stereo Extender Processing Unit Control Selectors

	A.23.11 Extension Unit Control Selectors
	A.23.12 AudioStreaming Interface Control Selectors
	A.23.13 Endpoint Control Selectors

	A.24 Connector Types

