

Universal Serial Bus
Device Class Definition

for
Audio Data Formats

Release 2.0

May 31, 2006

Release 2.0 May 31, 2006 1

Scope of This Release

This document is the Release 2.0 of this device class definition.

Contributors
Geert Knapen (Editor) Philips Applied Technologies
 AppTech-USA

1101 McKay Drive M/S 16
San Jose, CA 95131
USA
Phone: +1 (408) 474-8774
E-mail: geert.knapen@philips.com

Mike Kent Roland Corporation
Kaoru Ishimine Roland Corporation
Shoichi Kojima Roland Corporation
Robert Gilsdorf Creative Labs
Daniel (D.J.) Sisolak Microsoft Corporation
Jack Unverferth Microsoft Corporation
Niel Warren Apple Computer, Inc.
Len Layton C-Media Electronics
Mark Cookson M-Audio

Revision History

Revision Date Filename Author Description

1.7 Mar 18, 98 Frmts17.doc USB-IF DWG Original Frmts.doc document opened for
review.

1.7a Oct. 24, 02 Frmts17a.doc Geert Knapen Identified areas for change.

1.7b Dec 06, 02 Frmts17b.doc DJ Sisolak Updated for USB 2.0 Core Specification

1.7c Dec 10, 02 Frmts17c.doc DJ Sisolak Make comments on the edits and accepted
a number of changes.

1.7d Feb. 05, 03 Frmts17d.doc Geert Knapen Reviewed and accepted additional
changes.

1.7e Feb. 07, 03 Frmts17e.doc Geert Knapen Completed cluster descriptors in Format
descriptors. Added language for the sliding
averaging window.

1.7e1 Feb. 19, 03 Frmts17e1.doc Geert Knapen Actually added language for USB
packetization.

1.7f Mar. 26, 03 Frmts17f.doc Geert Knapen Accepted all changes

1.7g Apr. 07, 03 Frmts17g.doc Geert Knapen Major overhaul. Halfway through the
RANGE implementation

1.7h Jun. 03, 03 Frmts17h.doc Geert Knapen Accepted all the changes so far.

1.7i Jun. 03, 03 Frmts17i.doc Geert Knapen Edited requests to reflect the RANGE
attribute

Release 2.0 May 31, 2006 2

Revision Date Filename Author Description

1.7j Jul..11, 03 Frmts1ji.doc Geert Knapen Accepted all the changes, fixed a duplicate
definition for D6

1.7k Sep. 08, 03 Frmts17k.doc Geert Knapen Added RAW_DATA format

1.7l Sep. 10, 03 Frmts17l.doc Geert Knapen Accepted all the changes

1.7m Oct. 14, 03 Frmts17m.doc Geert Knapen Added CN to all requests. Added some
Controls.

1.7n Nov. 05, 03 Frmts17n.doc Geert Knapen Accepted all the changes.

1.7o Nov. 17, 03 Frmts17o.doc Geert Knapen Removed all references to sampling
frequencies in the format-specific
descriptors.

1.7p Dec. 01, 03 Frmts17p.doc Geert Knapen Accepted all the changes

1.7q Dec. 12, 03 Frmts17q.doc Geert Knapen Introduced extended Format Types

1.7r Feb. 04, 04 Frmts17r.doc Geert Knapen Accepted all changes

1.7s Apr. 13, 04 Frmts17s.doc Geert Knapen Added new Type III codes. Added Hi-Res
Timestamp Sideband Protocol. Added
Type IV Format. Moved decoder
information to Audio document. Removed
the concept of Format-specific descriptors
and replaced them with Decoder
descriptors

1.7t Apr. 28, 04 Frmts17t.doc Geert Knapen Added more info on the different audio
data format types.

1.8 May 26, 04 Frmts18.doc Geert Knapen Accepted all changes and promoted to 1.8
level.

1.8a Aug. 10, 05 Frmts18a.doc Geert Knapen Minor editorial changes

1.8b Aug. 16, 05 Frmts18b.doc Geert Knapen Accepted editorial changes, based on F2F
meeting review

1.8c Aug. 16, 05 Frmts18c.doc Geert Knapen Added DTS support

1.8d Sep. 02, 05 Frmts18d.doc Geert Knapen Accepted all the changes.

1.9RC1 Sep. 02, 05 Frmts19RC1.doc Geert Knapen Republished unchanged as 1.9RC1

1.9RC2 Oct. 05, 05 Frmts19RC2.doc Geert Knapen Removed comment on the Microsoft link.
Accepted the change.

1.9 Oct. 07, 05 Frmts19.doc Geert Knapen Promoted to 1.9 without change.

2.0RC1 May 19, 06 Frmts20RC1.doc Geert Knapen Promoted to 2.0RC1 without change.

Release 2.0 May 31, 2006 3

Revision Date Filename Author Description

2.0 May 31, 06 Frmts20.doc Geert Knapen Added new Intellectual Property
Disclaimer. Final version.

Release 2.0 May 31, 2006 4

Copyright © 1997-2006 USB Implementers Forum, Inc.
All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER

A LICENSE IS HEREBY GRANTED TO REPRODUCE THIS SPECIFICATION FOR INTERNAL
USE ONLY. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,
IS GRANTED OR INTENDED HEREBY.

USB-IF AND THE AUTHORS OF THIS SPECIFICATION EXPRESSLY DISCLAIM ALL
LIABILITY FOR INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS RELATING TO
IMPLEMENTATION OF INFORMATION IN THIS SPECIFICATION. USB-IF AND THE
AUTHORS OF THIS SPECIFICATION ALSO DO NOT WARRANT OR REPRESENT THAT
SUCH IMPLEMENTATION(S) WILL NOT INFRINGE THE INTELLECTUAL PROPERTY RIGHTS
OF OTHERS.

THIS SPECIFICATION IS PROVIDED “AS IS” AND WITH NO WARRANTIES, EXPRESS OR
IMPLIED, STATUTORY OR OTHERWISE. ALL WARRANTIES ARE EXPRESSLY
DISCLAIMED. USB-IF, ITS MEMBERS AND THE AUTHORS OF THIS SPECIFICATION
PROVIDE NO WARRANTY OF MERCHANTABILITY, NO WARRANTY OF NON-
INFRINGEMENT, NO WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE, AND NO
WARRANTY ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.

IN NO EVENT WILL USB-IF, MEMBERS OR THE AUTHORS BE LIABLE TO ANOTHER FOR
THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS
OF USE, LOSS OF DATA OR ANY INCIDENTAL, CONSEQUENTIAL, INDIRECT, OR SPECIAL
DAMAGES, WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING
IN ANY WAY OUT OF THE USE OF THIS SPECIFICATION, WHETHER OR NOT SUCH
PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

NOTE: VARIOUS USB-IF MEMBERS PARTICIPATED IN THE DRAFTING OF THIS
SPECIFICATION. CERTAIN OF THESE MEMBERS MAY HAVE DECLINED TO ENTER INTO
A SPECIFIC AGREEMENT LICENSING INTELLECTUAL PROPERTY RIGHTS THAT MAY BE
INFRINGED IN THE IMPLEMENTATION OF THIS SPECIFICATION. PERSONS IMPLEMENT
THIS SPECIFICATION AT THEIR OWN RISK.

Dolby™, AC-3™, Pro Logic™ and Dolby Surround™ are trademarks of Dolby Laboratories, Inc.
All other product names are trademarks, registered trademarks, or service marks of their respective owners.

Please send comments via electronic mail to audio-chair@usb.org

Release 2.0 May 31, 2006 5

Table of Contents

Scope of This Release... 2
Contributors ... 2
Revision History... 2
Table of Contents... 6
List of Tables .. 7
List of Figures .. 8
List of Figures .. 8
1 Introduction... 9

1.1 Related Documents ... 9
1.2 Terms and Abbreviations... 9

2 Audio Data Formats.. 11
2.1 Transfer Delimiter .. 12
2.2 Virtual Frame and Virtual Frame Packet Definitions ... 13
2.3 Simple Audio Data Formats... 13

2.3.1 Type I Formats ... 13
2.3.2 Type II Formats .. 17
2.3.3 Type III Formats ... 19
2.3.4 Type IV Formats... 20

2.4 Extended Audio Data Formats .. 21
2.4.1 Extended Type I Formats ... 21
2.4.2 Extended Type II Formats .. 23
2.4.3 Extended Type III Formats ... 24
2.4.4 Side Band Protocols... 25

3 Adding New Audio Data Formats.. 27
4 Adding New Side Band Protocols... 28
Appendix A. Additional Audio Device Class Codes.. 29

A.1 Format Type Codes... 29
A.2 Audio Data Format Bit Allocation in the bmFormats field.. 29

A.2.1 Audio Data Format Type I Bit Allocations .. 29
A.2.2 Audio Data Format Type II Bit Allocations ... 29
A.2.3 Audio Data Format Type III Bit Allocations .. 30
A.2.4 Audio Data Format Type IV Bit Allocations .. 30

A.3 Side Band Protocol Codes .. 31

Release 2.0 May 31, 2006 6

List of Tables

Table 2-1: Packetization .. 14
Table 2-2: Type I Format Type Descriptor ... 15
Table 2-3: Type II Format Type Descriptor .. 18
Table 2-4: Type III Format Type Descriptor ... 20
Table 2-5: Type IV Format Type Descriptor... 21
Table 2-6: Extended Type I Format Type Descriptor.. 22
Table 2-7: Extended Type II Format Type Descriptor... 23
Table 2-8: Extended Type III Format Type Descriptor.. 25
Table 2-9: Hi-Res Presentation TimeStamp Layout.. 25
Table A-1: Format Type Codes ... 29
Table A-2: Audio Data Format Type I Bit Allocations... 29
Table A-3: Audio Data Format Type II Bit Allocations.. 29
Table A-4: Audio Data Format Type III Bit Allocations... 30
Table A-5: Audio Data Format Type IV Bit Allocations .. 30
Table A-6: Side Band Protocol Codes ... 31

Release 2.0 May 31, 2006 7

List of Figures

Figure 2-1: Type I Audio Stream... 11
Figure 2-2: Type II Audio Stream.. 12
Figure 2-3: Extended Type I Format... 22
Figure 2-4: Extended Type II Format.. 23
Figure 2-5: Extended Type III Format... 24

Release 2.0 May 31, 2006 8

1 Introduction
The intention of this document is to describe in detail all the Audio Data Formats that are supported by the
Audio Device Class. This document is considered an integral part of the Audio Device Class Specification,
although subsequent revisions of this document are independent of the revision evolution of the main USB
Audio Specification. This is to easily accommodate the addition of new Audio Data Formats without
impeding the core USB Audio Specification.

1.1 Related Documents
• Universal Serial Bus Specification, Revision 2.0 (referred to in this document as the USB

Specification). In particular, see Chapter 5, “USB Data Flow Model” and Chapter 9, “USB Device
Framework.”

• Universal Serial Bus Device Class Definition for Audio Devices (referred to in this document as USB
Audio Device Class).

• Universal Serial Bus Device Class Definition for Terminal Types (referred to in this document as USB
Audio Terminal Types).

• ANSI S1.11-1986 standard.
• MPEG-1 standard ISO/IEC 111172-3 1993. (available from http://www.iso.ch)
• MPEG-2 standard ISO/IEC 13818-3 Feb. 20, 1997. (available from http://www.iso.ch)
• Digital Audio Compression Standard (AC-3), ATSC A/52A Aug. 20, 2001. (available from

http://www.atsc.org)
• Windows Media Audio (WMA) specification. (available from http://www.microsoft.com)
• ANSI/IEEE-754 floating-point standard.
• ISO/IEC 60958 International Standard: Digital Audio Interface and Annexes.
• ISO/IEC 61937 standard.
• ITU G.711 standard.
• ETSI Specification TS 102 114, “DTS Coherent Acoustics; Core and Extensions”. (Available from

http://webapp.etsi.org/action%5CPU/20020827/ts_102114v010101p.pdf)

1.2 Terms and Abbreviations
This section defines terms used throughout this document. For additional terms that pertain to the
Universal Serial Bus, see Chapter 2, “Terms and Abbreviations,” in the USB Specification.

AC-3 Audio compression standard from Dolby Labs.

Audio Slot A collection of audio subslots, each containing a PCM
audio sample of a different physical audio channel, taken
at the same moment in time.

Audio Stream A concatenation of a potentially very large number of
audio slots ordered according to ascending time.

Audio Subslot Holds a single PCM audio sample.

DTS Acronym for Digital Theater Systems.

DVD Acronym for Digital Versatile Disc.

Encoded Audio Bit Stream A concatenation of a potentially very large number of
encoded audio frames, ordered according to ascending
time.

Encoded Audio Frame A sequence of bits that contains an encoded representation
of audio samples from one or more physical audio
channels taken over a fixed period of time.

Release 2.0 May 31, 2006 9

http://www.iso.ch/
http://www.iso.ch/
http://www.atsc.org/
http://webapp.etsi.org/action%5CPU/20020827/ts_102114v010101p.pdf

MPEG Acronym for Moving Pictures Expert Group.

PCM Acronym for Pulse Coded Modulation.

Virtual Frame A grouping of USB (micro)frames that are related.

Virtual Frame Packet A packet that contains all the audio slots that are
transferred over the bus during a virtual frame.

Transfer Delimiter A unique token that indicates an interruption in an
isochronous data packet stream. Can be either a zero-
length data packet or the absence of an isochronous
transfer in a certain USB frame.

WMA Acronym for Windows Media Audio.

Release 2.0 May 31, 2006 10

2 Audio Data Formats
Audio Data formats can be divided in two main groups:

• Simple Audio Data Formats
• Extended Audio Data Formats

Simple Audio Data Formats can then be subdivided into four groups according to type.

The first group, Type I, deals with audio data streams that are transmitted over USB and are constructed on
a sample-by-sample basis. Each audio sample is represented by a single independent symbol, contained in
an audio subslot. Different compression schemes may be used to transform the audio samples into symbols.

Note: This is different from encoding. Compression is considered to take place on a per-audio-sample
base. Each audio sample generates one symbol (e.g. A-law compression where a 16-bit audio
sample is compressed into an 8 bit symbol).

If multiple physical audio channels are formatted into a single audio channel cluster, then samples at time x
of subsequent channels are first contained into audio subslots. These audio subslots are then interleaved,
according to the cluster channel ordering as described in the main USB Audio Specification, and then
grouped into an audio slot. The audio samples, taken at time x+1, are interleaved in the same fashion to
generate the next audio slot and so on. The notion of physical channels is explicitly preserved during
transmission. A typical example of Type I formats is the standard PCM audio data. The following figure
illustrates the concept.

Figure 2-1: Type I Audio Stream

The second group, Type II, deals with those formats that do not preserve the notion of physical channels
during the transmission over USB. Typically, all non-PCM encoded audio data streams belong to this
group. A number of audio samples, often originating from multiple physical channels and taken over a
certain period of time, are encoded into a number of bits in such a way that, after transmission, the original
audio samples can be reconstructed to a certain degree of accuracy. The number of bits used for
transmission is typically one or more orders of magnitude smaller than the number of bits needed to
represent the original PCM audio samples, effectively realizing a considerable bandwidth reduction during
transmission.

Release 2.0 May 31, 2006 11

Figure 2-2: Type II Audio Stream

The third group, Type III, contains special formats that do not fit in both previous groups. In fact, they mix
characteristics of Type I and Type II groups to transmit audio data streams over USB. One or more non-
PCM encoded audio data streams are packed into “pseudo-stereo samples” and transmitted as if they were
real stereo PCM audio samples. The sampling frequency of these pseudo samples matches the sampling
frequency of the original PCM audio data streams. Therefore, clock recovery at the receiving end is easier
than it is in the case of Type II formats. The drawback is that unless multiple non-PCM encoded streams
are packed into one pseudo stereo stream, more bandwidth than necessary is consumed.

The fourth group, Type IV, deals with audio streams that are not transmitted over USB. Instead, they
interface with the audio function through an AudioStreaming interface that does not contain a USB
isochronous IN or OUT endpoint. These streams typically connect via a digital interface like S/PDIF (or
some other means of connectivity) but require interaction from the Host before they enter or leave the
audio function. A typical example is an external S/PDIF connector that can accept an AC-3 encoded audio
stream. This stream is first processed by an AC-3 decoder before the (decoded) logical audio channels
enter the audio function through the Input Terminal that represents this S/PDIF connection. The
capabilities of the AC-3 decoder are advertised by means of the AC-3 Decoder descriptor and the decoder
Controls can be programmed through the AudioStreaming interface.

In addition to the Simple Audio Data Formats described above, Extended Audio Data Formats are defined.
These are based on the Simple Audio Data Formats Type I, II, and III definitions but they provide an
optional packet header and for the Extended Audio Data Format Type I, an optional synchronous (i.e.
sample accurate) control channel. Type IV Audio Data Formats do not have an Extended Audio Data
Format definition.

Section A.1, “Format Type Codes” summarizes the Audio Data Formats that are currently supported by the
Audio Device Class. The following sections explain those formats in more detail.

2.1 Transfer Delimiter
Isochronous data streams are continuous in nature, although the actual number of bytes sent per packet
may vary throughout the lifetime of the stream (for rate adaptation purposes for instance). To indicate a
temporary stop in the isochronous data stream without closing the pipe (and thus relinquishing the USB

Release 2.0 May 31, 2006 12

bandwidth), an in-band Transfer Delimiter needs to be defined. This specification considers two situations
to be a Transfer Delimiter. The first is a zero-length data packet and the second is the absence of an
isochronous transfer in a USB (micro)frame that would normally have an isochronous transfer. Both
situations are considered equivalent and the audio function is expected to behave the same. However, the
second type consumes less isochronous USB bandwidth (i.e. zero bandwidth). In both cases, this
specification considers a Transfer Delimiter to be an entity that can be sent over the USB.

2.2 Virtual Frame and Virtual Frame Packet Definitions
To better describe packetization for audio the concept of a “virtual frame” (VF) is introduced. A virtual
frame is defined as:

VF = (micro)frame * 2(bInterval-1)

In addition, a “virtual frame packet” (VFP) is introduced. A virtual frame packet is defined as a packet that
contains all the samples that are transferred over the bus during a virtual frame. For full-/high-speed
endpoints, the virtual frame packets are exactly the same as the physical packets that are transferred over
USB. However, for high-speed high-bandwidth endpoints, the virtual frame packet is the concatenation of
the two or three physical packets that are transferred over the bus in a microframe.

Note: The USB Specification already considers the 2 or 3 transactions of a high-speed high-bandwidth
transfer to be part of a single packet. See Section 5.12.3, “Clock Synchronization”

The above definitions provide a model of ‘one (virtual frame) packet per (virtual) frame’, irrespective of
the actual transactions on the USB.

2.3 Simple Audio Data Formats

2.3.1 Type I Formats
The following sections describe the Audio Data Formats that belong to Type I. A number of terms and
their definition are presented.

2.3.1.1 USB Packets
Audio data streams that are inherently continuous must be packetized when sent over the USB. The quality
of the packetizing algorithm directly influences the amount of effort needed to reconstruct a reliable sample
clock at the receiving side.

The goal must be to keep the instantaneous number of audio slots per virtual frame, ni as close as possible
to the average number of audio slots per virtual frame, nav. The average nav must be calculated as follows:

t
Tn VF

av ∆
=

where TVF is the duration of a virtual frame and ∆t is the sample time (1/FS). In most cases nav will be a
number with a fractional part.

If the sampling rate is a constant, the allowable variation on ni is limited to one audio slot, that is, ∆ni = 1.
This implies that all virtual frame packets must either contain INT(nav) audio slots (small VFP) or
INT(nav) + 1 (large VFP) audio slots. For all i:

ni = INT(nav) | INT(nav) + 1

Note: In the case where nav = INT(nav), ni may vary between INT(nav) - 1 (small VFP), INT(nav)
(medium VFP) and INT(nav) + 1 (large VFP).

Furthermore, a large VFP must be generated as soon as it becomes available. Typically, a source will
generate a number of small VFPs as long as the accumulated fractional part of nav remains < 1. Once the

Release 2.0 May 31, 2006 13

accumulated fractional part of nav becomes ≥ 1, the source must send a large VFP and decrement the
accumulator by 1.

Due to possible different notions of time in the source and the sink (they might each have their own
independent sampling clock), the (small VFP)/(large VFP) pattern generated by the source may be different
from what the sink expects. Therefore, the sink must be capable to accept a large VFP at all times.

Example:

Assume FS = 44,100 Hz and TVF = 1ms. Then nav = 44.1 audio slots. Since the source can only send an
integer number of audio slots per VF, it will send small VFPs of 44 audio slots. Each VF, it therefore sends
‘0.1 slot’ too few and it will accumulate this fractional part in an accumulator. After having sent 9 small
VFPs of 44 audio slots, at the tenth VF it will have exactly one audio slot in excess and therefore can send
a large VFP containing 45 audio slots. Decrementing the accumulator by 1 brings it back to 0 and the
process can start all over again. The source will thus produce a repetitive pattern of 9 small VFPs of 44
audio slots followed by 1 large VFP of 45 audio slots. The following table illustrates the process:

Table 2-1: Packetization

#VF nav ni Fraction Accumulator

n 44.1 44 0.1 0.1

n+1 44.1 44 0.1 0.2

n+2 44.1 44 0.1 0.3

n+3 44.1 44 0.1 0.4

n+4 44.1 44 0.1 0.5

n+5 44.1 44 0.1 0.6

n+6 44.1 44 0.1 0.7

n+7 44.1 44 0.1 0.8

n+8 44.1 44 0.1 0.9

n+9 44.1 45 0.1 1.0 -> 0

n+10 44.1 44 0.1 0.1

n+11 44.1 44 0.1 0.2

… … … … …

2.3.1.2 Pitch Control
If the sampling rate can be varied (to implement pitch control), the allowable variation on ni is limited to
one audio slot per virtual frame. For all i:

ni+1 = ni | ni ± 1

Pitch control is restricted to adaptive endpoints only. AudioStreaming interfaces that support pitch control
on their isochronous endpoint are required to report this in the class-specific endpoint descriptor. In
addition, a Set/Get Pitch Control request is required to enable or disable the pitch control functionality.

Release 2.0 May 31, 2006 14

2.3.1.3 Audio Subslot
The basic structure used to represent audio data is the audio subslot. An audio subslot holds a single audio
sample. An audio subslot always contains an integer number of bytes.

This specification limits the possible audio subslot sizes (bSubslotSize) to 1, 2, 3 or 4 bytes per audio
subslot. An audio sample is represented using a number of bits (bBitResolution) less than or equal to the
total number of bits available in the audio subslot, i.e. bBitResolution ≤ bSubslotSize*8.

AudioStreaming endpoints must be constructed in such a way that a valid transfer can take place as long as
the reported audio subslot size (bSubslotSize) is respected during transmission. If the reported bits per
sample (bBitResolution) do not correspond with the number of significant bits actually used during
transfer, the device will either discard trailing significant bits ([actual_bits_per_sample] > bBitResolution)
or interpret trailing zeros as significant bits ([actual_bits_per_sample] < bBitResolution).

2.3.1.4 Audio Slot
An audio slot consists of a collection of audio subslots, each containing an audio sample of a different
physical audio channel, taken at the same moment in time. The number of audio subslots in an audio slot
equals the number of logical audio channels in the audio channel cluster. The ordering of the audio
subslots in the audio slot obeys the rules set forth in the USB Audio Specification. All audio subslots must
have the same audio subslot size.

2.3.1.5 Audio Streams
An audio stream is a concatenation of a potentially very large number of audio slots, ordered according to
ascending time. Streams are packetized when transported over USB whereby virtual frame packets can
only contain an integer number of audio slots. Each packet always starts with the same channel, and the
channel order is respected throughout the entire transmission. If, for any reason, there are no audio slots
available to construct a VFP, a Transfer Delimiter must be sent instead.

2.3.1.6 Type I Format Type Descriptor
The Type I format type descriptor starts with the usual three fields: bLength, bDescriptorType, and
bDescriptorSubtype.

The bFormatType field indicates this is a Type I descriptor. The bSubslotSize field indicates how many
bytes are used to transport an audio subslot. The bBitResolution field indicates how many bits of the total
number of available bits in the audio subslot are truly used by the audio function to convey audio
information.

Table 2-2: Type I Format Type Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 6

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant FORMAT_TYPE descriptor subtype.

3 bFormatType 1 Constant FORMAT_TYPE_I. Constant identifying
the Format Type the AudioStreaming
interface is using.

4 bSubslotSize 1 Number The number of bytes occupied by one
audio subslot. Can be 1, 2, 3 or 4.

Release 2.0 May 31, 2006 15

Offset Field Size Value Description

5 bBitResolution 1 Number The number of effectively used bits from
the available bits in an audio subslot.

2.3.1.7 Type I Supported Formats
The following paragraphs list all currently supported Type I Audio Data Formats. The bit allocations in the
bmFormats field of the class-specific AS interface descriptor for the different Type I Audio Data Formats
can be found in Appendix A.2.1, “Audio Data Format Type I Bit Allocations.”

2.3.1.7.1 PCM Format
The PCM (Pulse Coded Modulation) format is the most commonly used audio format to represent audio
data streams. The audio data is not compressed and uses a signed two’s-complement fixed point format. It
is left-justified (the sign bit is the Msb) and data is padded with trailing zeros to fill the remaining unused
bits of the subslot. The binary point is located to the right of the sign bit so that all values lie within the
range [-1, +1).

2.3.1.7.2 PCM8 Format
The PCM8 format is introduced to be compatible with the legacy 8-bit wave format. Audio data is
uncompressed and uses 8 bits per sample (bBitResolution = 8). In this case, data is unsigned fixed-point,
left-justified in the audio subslot, Msb first. The range is [0,255].

2.3.1.7.3 IEEE_FLOAT Format
The IEEE_FLOAT format is based on the ANSI/IEEE-754 floating-point standard. Audio data is
represented using the basic single-precision format. The basic single-precision number is 32 bits wide and
has an 8-bit exponent and a 24-bit mantissa. Both mantissa and exponent are signed numbers, but neither is
represented in two's-complement format. The mantissa is stored in sign magnitude format and the exponent
in biased form (also called excess-n form). In biased form, there is a positive integer (called the bias) which
is subtracted from the stored number to get the actual number. For example, in an eight-bit exponent, the
bias is 127. To represent 0, the number 127 is stored. To represent -100, 27 is stored. An exponent of all
zeroes and an exponent of all ones are both reserved for special cases, so in an eight-bit field, exponents of
-126 to +127 are possible. In the basic floating-point format, the mantissa is assumed to be normalized so
that the most significant bit is always one, and therefore is not stored. Only the fractional part is stored.
Denormalized (exponent = 0) values are considered to be zero.

The 32-bit IEEE-754 floating-point word is broken into three fields. The most significant bit stores the sign
of the mantissa, the next group of 8 bits stores the exponent in biased form, and the remaining 23 bits store
the magnitude of the fractional portion of the mantissa. For further information, refer to the ANSI/IEEE-
754 standard.

The data is conveyed over USB using 32 bits per sample (bBitResolution = 32; bSubslotSize = 4).

2.3.1.7.4 ALaw Format and µLaw Format
Starting from 12- or 16-bits linear PCM samples, simple compression down to 8-bits per sample (one byte
per sample) can be achieved by using logarithmic companding. The compressed audio data uses 8 bits per
sample (bBitsPerSample = 8). Data is signed fixed point, left-justified in the subslot, Msb first. The
compressed range is [-128,128]. The difference between Alaw and µLaw compression lies in the formulae
used to achieve the compression. Refer to the ITU G.711 standard for further details.

Release 2.0 May 31, 2006 16

2.3.1.7.5 Type I Raw Data
This audio format is included to allow transport of data (audio or other) over a USB AudioStreaming
interface in the form of PCM-like audio slots when the actual format or even the meaning of the
transported data is unknown. The USB pipe simply acts as a pass-through. As a consequence, such data
can never be interpreted inside the audio function and can only be routed from an Input Terminal to one or
more Output Terminals. From a USB standpoint, the data is packed as if it were Type I formatted audio
data, but the data is never to be interpreted as being audio data.

2.3.2 Type II Formats
Type II formats are used to transmit non-PCM encoded audio data into bit streams that consist of a
sequence of encoded audio frames.

2.3.2.1 Encoded Audio Frames
An encoded audio frame is a sequence of bits that contains an encoded representation of one or more
physical audio channels. The encoding takes place over a fixed number of audio slots. Each encoded audio
frame contains enough information to entirely reconstruct the audio samples (albeit not lossless), encoded
in the encoded audio frame. No information from adjacent encoded audio frames is needed during
decoding. The number of audio slots used to construct one encoded audio frame depends on the encoding
scheme. (For MPEG, the number of slots per encoded audio frame (nf) is 384 for Layer I or 1152 for
Layer II. For AC-3, the number of slots is 1536.)

In most cases, the encoded audio frame represents multiple physical audio channels. The number of bits
per encoded audio frame may be variable. The content of the encoded audio frame is defined according to
the implemented encoding scheme. Where applicable, the bit ordering shall be MSB first, relative to
existing standards of serial transmission or storage of that encoding scheme. An encoded audio frame
represents an interval longer than the USB (micro)frame. This is typical of audio compression algorithms
that use psycho-acoustic or vocal tract parametric models.

Note: It is important to make a clear distinction between a USB frame and an encoded audio frame.
The overloaded use of the term frame could cause confusion. Therefore, this specification will
always use the qualifier ‘encoded audio’ to refer to MPEG or AC-3 encoded audio frames.

2.3.2.2 Audio Bit Streams
An encoded audio bit stream is a concatenation of a potentially very large number of encoded audio
frames, ordered according to ascending time. Subsequent encoded audio frames are independent and can be
decoded separately.

2.3.2.3 USB Packets
Encoded audio bit streams are packetized when transported over an isochronous pipe. Each virtual frame
packet potentially contains only part of a single encoded audio frame. Packet sizes are determined
according to the short-packet protocol. The encoded audio frame is broken down into a number of packets,
each containing wMaxPacketSize bytes except for the last packet, which may be smaller and contains the
remainder of the encoded audio frame. If the MaxPacketsOnly bit D7 in the bmAttributes field of the
class-specific endpoint descriptor is set, the last (short) packet must be padded with zero bytes to
wMaxPacketSize length. No virtual frame packet may contain bits belonging to different encoded audio
frames. If the encoded audio frame length is not a multiple of 8 bits, the last byte in the last packet is
padded with zero bits. The decoder must ignore all padded extra bits and bytes. Consecutive encoded audio
frames are separated by at least one Transfer Delimiter. A Transfer Delimiter must be sent in all virtual
frames until the next encoded audio frame is due. The above rules guarantee that a new encoded audio
frame always starts on a virtual frame packet boundary.

Release 2.0 May 31, 2006 17

2.3.2.4 Bandwidth Allocation
The encoded audio frame time tf equals the number of audio slots per encoded audio frame nf divided by
the sampling rate fs of the original audio samples.

s

f
f f

n
t =

The allocated bandwidth for the pipe must accommodate for the largest possible encoded audio frame to be
transmitted within an encoded audio frame time. This should take into account the Transfer Delimiter
requirement and any differences between the time base of the stream and the USB (micro)frame timer. The
device may choose to consume more bandwidth than necessary (by increasing the reported
wMaxPacketSize) to minimize the time needed to transmit an entire encoded audio frame. This can be
used to enable early decoding and therefore minimize system latency.

2.3.2.5 Timing
The timing reference point is the beginning of an encoded audio frame. Therefore, the USB packet that
contains the first bits (usually the encoded audio frame sync word) of the encoded audio frame is used as a
timing reference in USB space. This USB packet is called the reference packet. The transmission of the
reference packet of an encoded audio frame should begin at the target playback time of that frame (minus
the endpoint’s reported delay) rounded to the nearest USB (micro)frame time. This guarantees that, at the
receiving end, the arrival of subsequent reference packets matches the encoded audio frame time tf as
closely as possible.

2.3.2.6 Type II Format Type Descriptor
The Type II Format Type descriptor starts with the usual three fields bLength, bDescriptorType and
bDescriptorSubtype.

The bFormatType field indicates this is a Type II descriptor. The wMaxBitRate field contains the
maximum number of bits per second this interface can handle. It is a measure for the buffer size available
in the interface. The wSlotsPerFrame field contains the number of PCM audio slots contained within a
single encoded audio frame.

Table 2-3: Type II Format Type Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 8

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant FORMAT_TYPE descriptor subtype.

3 bFormatType 1 Constant FORMAT_TYPE_II. Constant identifying
the Format Type the AudioStreaming
interface is using.

4 wMaxBitRate 2 Number Indicates the maximum number of bits per
second this interface can handle.
Expressed in kbits/s.

6 wSlotsPerFrame 2 Number Indicates the number of PCM audio slots
contained in one encoded audio frame.

Release 2.0 May 31, 2006 18

2.3.2.7 Rate feedback
If the isochronous data endpoint needs explicit rate feedback (adaptive source, asynchronous sink), the
feedback pipe must report the number of equivalent PCM audio slots. The host will accumulate this data
and start transmission of an encoded audio frame whenever the current number of audio slots exceeds the
number of slots per encoded audio frame. The remainder is kept in the accumulator.

2.3.2.8 Type II Supported Formats
The following sections list all currently supported Type II Audio Data Formats. The bit allocations in the
bmFormats field of the class-specific AS interface descriptor for the different Type II Audio Data Formats
can be found in Appendix A.2.2, “Audio Data Format Type II Bit Allocations.”

2.3.2.8.1 MPEG Format
Refer to the ISO/IEC 11172-3:1993 “Information technology -- Coding of moving pictures and associated
audio for digital storage media at up to about 1,5 Mbit/s -- Part 3: Audio” and the ISO/IEC 13818-3:1998
“Information technology -- Generic coding of moving pictures and associated audio information -- Part 3:
Audio” specifications for detailed format information.

2.3.2.8.2 AC-3 Format
Refer to the Digital Audio Compression Standard (AC-3), ATSC A/52A Aug. 20, 2001 for detailed format
information.

2.3.2.8.3 WMA Format
This is an audio compression format from Microsoft. For technical and licensing information, contact
Microsoft directly (http://www.microsoft.com/windows/windowsmedia/default.aspx).

2.3.2.8.4 DTS Format
Refer to the ETSI Specification TS 102 114, “DTS Coherent Acoustics; Core and Extensions”. Available
from http://webapp.etsi.org/action%5CPU/20020827/ts_102114v010101p.pdf.

2.3.2.8.5 Type II Raw Data
This audio format is included to allow transport of data (audio or other) over a USB AudioStreaming
interface in the form of a bit stream when the actual format or even the meaning of the transported data is
unknown. The USB pipe simply acts as a pass-through. As a consequence, such data can never be
interpreted inside the audio function and can only be routed from an Input Terminal to one or more Output
Terminals. From a USB standpoint, the data is packed as if it were Type II formatted audio data, but the
data is never to be interpreted as being audio data.

2.3.3 Type III Formats
These formats are based upon the IEC61937 standard. The IEC61937 standard describes a method to
transfer non-PCM encoded audio bit streams over an IEC60958 digital audio interface, together with the
transfer of the accompanying “Channel Status” and “User Data.”

The IEC60958 standard specifies a widely used method of interconnecting digital audio equipment with
two-channel linear PCM audio. The IEC61937 standard describes a way in which the IEC60958 interface
must be used to convey non-PCM encoded audio bit streams for consumer applications.

The same basic techniques used in IEC61937 are reused here to convey non-PCM encoded audio bit
streams over a Type III formatted audio stream. From a USB transfer standpoint, the data streaming over
the interface looks exactly like two-channel 16 bit PCM audio data.

Release 2.0 May 31, 2006 19

http://www.microsoft.com/windows/windowsmedia/default.aspx
http://webapp.etsi.org/action%5CPU/20020827/ts_102114v010101p.pdf

2.3.3.1 Type III Format Type Descriptor
The bFormatType field indicates this is a Type III descriptor. The bSubSlotSize field indicates how many
bytes are used to transport an audio subslot. The bBitResolution field indicates how many bits of the total
number of available bits in the audio subslot are truly used by the audio function to convey audio
information.

Table 2-4: Type III Format Type Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 6

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant FORMAT_TYPE descriptor subtype.

3 bFormatType 1 Constant FORMAT_TYPE_III. Constant identifying
the Format Type the AudioStreaming
interface is using.

4 bSubslotSize 1 Number The number of bytes occupied by one
audio subslot. Must be set to two.

5 bBitResolution 1 Number The number of effectively used bits from
the available bits in an audio subframe.

2.3.3.2 Type III Supported Formats
Refer to the ISO/IEC 60958 and ISO/IEC 61937 (several parts) specifications for detailed format
information. The bit allocations in the bmFormats field of the class-specific AS interface descriptor for
the different Type III Audio Data Formats can be found in Appendix A.2.3, “Audio Data Format Type III
Bit Allocations.”

The following is a list of formats that is covered or will be covered by the above specifications.

• IEC61937_AC-3
• IEC61937_MPEG-1_Layer1
• IEC61937_MPEG-1_Layer2/3 or IEC61937_MPEG-2_NOEXT
• IEC61937_MPEG-2_EXT
• IEC61937_MPEG-2_AAC_ADTS
• IEC61937_MPEG-2_Layer1_LS
• IEC61937_MPEG-2_Layer2/3_LS
• IEC61937_DTS-I
• IEC61937_DTS-II
• IEC61937_DTS-III
• IEC61937_ATRAC
• IEC61937_ATRAC2/3

In addition, the WMA audio compression format as defined by Microsoft is supported.

2.3.4 Type IV Formats
Type IV formats can only be used on external connections to the audio function that do not use a USB pipe
for their data transport but that do need an AudioStreaming interface to control an encoder or decoder
process in one or more of its Alternate Settings. A typical example of such a connection is an S/PDIF
connector that is capable of handling both PCM stereo audio data streams (IEC60958) in one Alternate

Release 2.0 May 31, 2006 20

Setting and encoded data streams (IEC61937) in another Alternate Setting of the interface. Note however
that the external connection could also be vendor specific (like a parallel data interface).

2.3.4.1 Type IV Format Type Descriptor
The bFormatType field indicates this is a Type IV descriptor.

Table 2-5: Type IV Format Type Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 4

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant FORMAT_TYPE descriptor subtype.

3 bFormatType 1 Constant FORMAT_TYPE_IV. Constant identifying
the Format Type the AudioStreaming
interface is using.

2.3.4.2 Type IV Supported Formats
This specification supports all Audio Data Formats on an external connection that are defined on a USB
pipe (Type I, II, and III). See Section 2.3.1.7, “Type I Supported Formats”, Section 2.3.2.8, “Type II
Supported Formats”, and Section 2.3.3.2, “Type III Supported Formats”.

The bit allocations in the bmFormats field of the class-specific AS interface descriptor for the different
Type IV Audio Data Formats can be found in Appendix A.2.4, “Audio Data Format Type IV Bit
Allocations.”

2.4 Extended Audio Data Formats
Extended Audio Data Formats add support for a Packet Header to the previously defined Simple Audio
Data Formats Type I, II, and III. For the Extended Audio Data Format Type I, an additional optional
synchronous Control Channel is defined.

2.4.1 Extended Type I Formats
Extended Audio Data Format Type I adds support for both a Packet Header and a synchronous Control
Channel to the Simple Type I Format definition.

All three elements (Packet Header, audio data, and Control Channel) of an Extended Type I packet are
optional. The Extended Format Type I descriptor (see further) indicates which elements are present. It is
therefore possible to provide only a Control Channel, without Packet Header or audio data. The following
figure further illustrates the concept.

Release 2.0 May 31, 2006 21

Pa
ck

et
 H

ea
de

r

Au
di

o
Sl

ot
C

on
tro

l

Au
di

o
Sl

ot
C

on
tro

l

Au
di

o
Sl

ot
C

on
tro

l

Au
di

o
Sl

ot
C

on
tro

l

Au
di

o
Sl

ot
C

on
tro

l

Au
di

o
Sl

ot
C

on
tro

l

Au
di

o
Sl

ot
C

on
tro

l

Figure 2-3: Extended Type I Format

Each Virtual Frame Packet (VFP) can start with an optional Packet Header. If Packet Headers are used,
they must be present in every VFP. The length of the Packet Header must be the same for every VFP. The
Packet Header is then followed by a number of Extended Audio Slots. An Extended Audio Slot is the
concatenation of a Control Word, followed by the Type I Audio Slot. The Control Channel therefore
consists of a stream of Control Words, where each Control Word is synchronous to its associated Audio
Slot. There are as many Control Channel Words per VFP as there are Audio Slots in the VFP. The byte
size of the Control Words is independent of the Audio Subslot size and is the same for each Audio Slot.

2.4.1.1 Extended Type I Format Type Descriptor
The first part of the Extended Type I Format Type descriptor is identical to the Simple Type I Format Type
descriptor (See Section 2.3.1.6, “Type I Format Type Descriptor”.) Three additional fields are added to
describe the Packet Header and the Control Channel.

The bHeaderLength field indicates the number of bytes contained in the Packet Header. The
bControlSize field indicates the size in bytes of each Control Channel Word in the stream. The
bSideBandProtocol field contains a constant identifying the Side Band Protocol that is used for the Packet
Header and Control Channel. This specification defines a number of Side Band Protocols (See Section
2.4.4, “Side Band Protocols”).

If the Packet Header is not used, then the bHeaderLength field must be set to 0. Likewise, if the Control
Channel is not implemented, then the bControlSize field must be set to 0. If the stream does not contain
actual audio data, the bNrChannels, bmChannelConfig and iChannelNames in the class-specific AS
Interface descriptor (See the USB Audio Device Class document) must all be set to 0.

Table 2-6: Extended Type I Format Type Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 9

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant FORMAT_TYPE descriptor subtype.

3 bFormatType 1 Constant EXT_FORMAT_TYPE_I. Constant
identifying the Format Type the
AudioStreaming interface is using.

4 bSubslotSize 1 Number The number of bytes occupied by one
audio subslot. Can be 1, 2, 3 or 4.

Release 2.0 May 31, 2006 22

Offset Field Size Value Description

5 bBitResolution 1 Number The number of effectively used bits from
the available bits in an audio subslot.

6 bHeaderLength 1 Number Size of the Packet Header, in bytes.

7 bControlSize 1 Number Size of the Control Channel Words, in
bytes.

8 bSideBandProtocol 1 Constant Constant, identifying the Side Band
Protocol used for the Packet Header and
Control Channel content.

2.4.2 Extended Type II Formats
Extended Audio Data Format Type II adds support for a Packet Header to the Simple Type II Format
definition.

The elements (Packet Header and audio data) of an Extended Type II packet are optional. The Extended
Format Type II descriptor (see further) indicates which elements are present. It is therefore possible to
provide only a Packet Header without audio data. The following figure further illustrates the concept.

P
ac

ke
t H

ea
de

r

Figure 2-4: Extended Type II Format

Each Virtual Frame Packet (VFP) can start with an optional Packet Header. If Packet Headers are used,
they must be present in every VFP. The length of the Packet Header must be the same for every VFP. The
Packet Header is then followed by the actual encoded audio frame data.

2.4.2.1 Extended Type II Format Type Descriptor
The first part of the Extended Type II Format Type descriptor is identical to the Simple Type II Format
Type descriptor (See Section 2.3.2.6, “Type II Format Type Descriptor”.) Two additional fields are added
to describe the Packet Header.

The bHeaderLength field indicates the number of bytes contained in the Packet Header. The
bSideBandProtocol field contains a constant identifying the Side Band Protocol that is used for the Packet
Header. This specification defines a number of Side Band Protocols (See Section 2.4.4, “Side Band
Protocols”).

If the Packet Header is not used, then the bHeaderLength field must be set to 0. If the stream does not
contain actual audio data, the bNrChannels, bmChannelConfig and iChannelNames in the class-specific
AS Interface descriptor (See the USB Audio Device Class document) must all be set to 0.

Table 2-7: Extended Type II Format Type Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 10

Release 2.0 May 31, 2006 23

Offset Field Size Value Description

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant FORMAT_TYPE descriptor subtype.

3 bFormatType 1 Constant Ext_FORMAT_TYPE_II. Constant
identifying the Format Type the
AudioStreaming interface is using.

4 wMaxBitRate 2 Number Indicates the maximum number of bits per
second this interface can handle.
Expressed in kbits/s.

6 wSamplesPerFrame 2 Number Indicates the number of PCM audio
samples contained in one encoded audio
frame.

8 bHeaderLength 1 Number Size of the Packet Header, in bytes.

9 bSideBandProtocol 1 Constant Constant, identifying the Side Band
Protocol used for the Packet Header
content.

2.4.3 Extended Type III Formats
Extended Audio Data Format Type III adds support for a Packet Header to the Simple Type III Format
definition.

The elements (Packet Header and audio data) of an Extended Type III packet are optional. The Extended
Format Type III descriptor (see further) indicates which elements are present. It is therefore possible to
provide only a Packet Header without audio data. The following figure further illustrates the concept.

P
ac

ke
t H

ea
de

r

Figure 2-5: Extended Type III Format

Each Virtual Frame Packet (VFP) can start with an optional Packet Header. If Packet Headers are used,
they must be present in every VFP. The length of the Packet Header must be the same for every VFP. The
Packet Header is then followed by the actual encoded audio frame data.

2.4.3.1 Extended Type III Format Type Descriptor
The first part of the Extended Type III Format Type descriptor is identical to the Simple Type III Format
Type descriptor (See Section 2.3.3.1, “Type III Format Type Descriptor”.) Two additional fields are added
to describe the Packet Header.

The bHeaderLength field indicates the number of bytes contained in the Packet Header. The
bSideBandProtocol field contains a constant identifying the Side Band Protocol that is used for the Packet
Header. This specification defines a number of Side Band Protocols (See Section 2.4.4, “Side Band
Protocols”).

Release 2.0 May 31, 2006 24

If the Packet Header is not used, then the bHeaderLength field must be set to 0. If the stream does not
contain actual audio data, the bNrChannels, bmChannelConfig and iChannelNames in the class-specific
AS Interface descriptor (See the USB Audio Device Class document) must all be set to 0.

Table 2-8: Extended Type III Format Type Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 8

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant FORMAT_TYPE descriptor subtype.

3 bFormatType 1 Constant EXT_FORMAT_TYPE_III. Constant
identifying the Format Type the
AudioStreaming interface is using.

4 bSubslotSize 1 Number The number of bytes occupied by one
audio subslot. Must be set to two.

5 bBitResolution 1 Number The number of effectively used bits from
the available bits in an audio subslot.

6 bHeaderLength 1 Number Size of the Packet Header, in bytes.

7 bSideBandProtocol 1 Constant Constant, identifying the Side Band
Protocol used for the Packet Header
content.

2.4.4 Side Band Protocols
This specification currently defines a single Side Band Protocol. Additional Protocols can be added later if
needed.

2.4.4.1 Presentation Timestamp Side Band Protocol
The Presentation Timestamp protocol only uses the Packet Header to convey high resolution time
information over the isochronous pipe. The Packet header is 12 bytes in size. It must occur at the start of
each VFP.

Bit D0 in the bmFlags field indicates whether this is a valid timestamp (D0 = 0b1) or a repeated or non-
valid timestamp (D0 = 0b0). When D0 is set to zero, the time fields of the Packet Header must be ignored.

The qNanoSeconds field indicates the time T at which the first sample in the VFP needs to be rendered
with respect to the start of the stream (T = 0). The qNanoSeconds field can range from 0 to 263-1 ns (Bit 63
is considered to be a sign bit and must be set to zero). It is up to the entity that generates the timestamp to
decide to which accuracy the timestamp will be rendered.

Table 2-9: Hi-Res Presentation TimeStamp Layout

Offset Field Size Value Description

0 bmFlags 4 Bitmap D30..0: Reserved. Must be set to 0.

D31: Valid.

Release 2.0 May 31, 2006 25

Offset Field Size Value Description

4 qNanoSeconds 8 Number Offset in nanoseconds from the beginning
of the audio stream.

Note: Timing information is intrinsically provided by the isochronous data transport mechanism itself
(packets are synchronized to the USB SOF and the number of samples per packet is an overall
measure of the audio data sampling rate). However, the high resolution presentation timestamp
could potentially be used to deliver more accurate instantaneous timing information to the sink
or to report a (constant) delay between the moment of transport over the USB and the moment
of actual rendition. Care must be taken to ensure that the information contained in the Packet
Header is at all times in agreement with the implicit timing information, delivered by the
isochronous streaming mechanism.

Release 2.0 May 31, 2006 26

3 Adding New Audio Data Formats
Adding new Audio Data Formats to this specification is achieved by proposing a fully documented Audio
Data Format to the Audio Device Class Working Group. Upon acceptance, they will register the new
Audio Data Format (attribute a unique bit position in the bmFormats field of the class-specific AS
interface descriptor) and update this document accordingly. This process will also guarantee that new
releases of generic USB audio drivers will support the newly registered Audio Data Formats.

It is always possible to use vendor-specific definitions if the above procedure is considered unsatisfactory.

Release 2.0 May 31, 2006 27

4 Adding New Side Band Protocols
Adding new Side Band Protocols to this specification is achieved by proposing a fully documented Side
Band Protocol to the Audio Device Class Working Group. Upon acceptance, they will register the new
Side Band Protocol (attribute a unique SideBandProtocol constant) and update this document accordingly.
This process will also guarantee that new releases of generic USB audio drivers will support the newly
registered Side Band Protocols.

It is always possible to use vendor-specific definitions if the above procedure is considered unsatisfactory.

Release 2.0 May 31, 2006 28

Appendix A. Additional Audio Device Class Codes

A.1 Format Type Codes
Table A-1: Format Type Codes

Format Type Code Value

FORMAT_TYPE_UNDEFINED 0x00

FORMAT_TYPE_I 0x01

FORMAT_TYPE_II 0x02

FORMAT_TYPE_III 0x03

FORMAT_TYPE_IV 0x04

EXT_FORMAT_TYPE_I 0x81

EXT_FORMAT_TYPE_II 0x82

EXT_FORMAT_TYPE_III 0x83

A.2 Audio Data Format Bit Allocation in the bmFormats field

A.2.1 Audio Data Format Type I Bit Allocations
Table A-2: Audio Data Format Type I Bit Allocations

Name bmFormats

PCM D0

PCM8 D1

IEEE_FLOAT D2

ALAW D3

MULAW D4

Reserved. Must be set to 0. D30..D5

TYPE_I_RAW_DATA D31

A.2.2 Audio Data Format Type II Bit Allocations
Table A-3: Audio Data Format Type II Bit Allocations

Name bmFormats

MPEG D0

Release 2.0 May 31, 2006 29

Name bmFormats

AC-3 D1

WMA D2

DTS D3

Reserved. Must be set to 0. D30..D4

TYPE_II_RAW_DATA D31

A.2.3 Audio Data Format Type III Bit Allocations
Table A-4: Audio Data Format Type III Bit Allocations

Name bmFormats

IEC61937_AC-3 D0

IEC61937_MPEG-1_Layer1 D1

IEC61937_MPEG-1_Layer2/3 or
IEC61937_MPEG-2_NOEXT

D2

IEC61937_MPEG-2_EXT D3

IEC61937_MPEG-2_AAC_ADTS D4

IEC61937_MPEG-2_Layer1_LS D5

IEC61937_MPEG-2_Layer2/3_LS D6

IEC61937_DTS-I D7

IEC61937_DTS-II D8

IEC61937_DTS-III D9

IEC61937_ATRAC D10

IEC61937_ATRAC2/3 D11

TYPE_III_WMA D12

Reserved. Must be set to 0. D31..D13

A.2.4 Audio Data Format Type IV Bit Allocations
Table A-5: Audio Data Format Type IV Bit Allocations

Name bmFormats

PCM D0

Release 2.0 May 31, 2006 30

Name bmFormats

PCM8 D1

IEEE_FLOAT D2

ALAW D3

MULAW D4

MPEG D5

AC-3 D6

WMA D7

IEC61937_AC-3 D8

IEC61937_MPEG-1_Layer1 D9

IEC61937_MPEG-1_Layer2/3 or
IEC61937_MPEG-2_NOEXT

D10

IEC61937_MPEG-2_EXT D11

IEC61937_MPEG-2_AAC_ADTS D12

IEC61937_MPEG-2_Layer1_LS D13

IEC61937_MPEG-2_Layer2/3_LS D14

IEC61937_DTS-I D15

IEC61937_DTS-II D16

IEC61937_DTS-III D17

IEC61937_ATRAC D18

IEC61937_ATRAC2/3 D19

TYPE_III_WMA D20

IEC60958_PCM D21

Reserved. Must be set to 0. D31..D22

A.3 Side Band Protocol Codes
Table A-6: Side Band Protocol Codes

Protocol Code Value

PROTOCOL_UNDEFINED 0x00

Release 2.0 May 31, 2006 31

Protocol Code Value

PRES_TIMESTAMP_PROTOCOL 0x01

Release 2.0 May 31, 2006 32

	Scope of This Release
	Contributors
	Revision History
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Related Documents
	Terms and Abbreviations

	Audio Data Formats
	Transfer Delimiter
	Virtual Frame and Virtual Frame Packet Definitions
	Simple Audio Data Formats
	Type I Formats
	USB Packets
	Pitch Control
	Audio Subslot
	Audio Slot
	Audio Streams
	Type I Format Type Descriptor
	Type I Supported Formats
	PCM Format
	PCM8 Format
	IEEE_FLOAT Format
	ALaw Format and (Law Format
	Type I Raw Data

	Type II Formats
	Encoded Audio Frames
	Audio Bit Streams
	USB Packets
	Bandwidth Allocation
	Timing
	Type II Format Type Descriptor
	Rate feedback
	Type II Supported Formats
	MPEG Format
	AC-3 Format
	WMA Format
	DTS Format
	Type II Raw Data

	Type III Formats
	Type III Format Type Descriptor
	Type III Supported Formats

	Type IV Formats
	Type IV Format Type Descriptor
	Type IV Supported Formats

	Extended Audio Data Formats
	Extended Type I Formats
	Extended Type I Format Type Descriptor

	Extended Type II Formats
	Extended Type II Format Type Descriptor

	Extended Type III Formats
	Extended Type III Format Type Descriptor

	Side Band Protocols
	Presentation Timestamp Side Band Protocol

	Adding New Audio Data Formats
	Adding New Side Band Protocols

